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1. Introduction 

hen a treated metal naturally changes into a more 
stable state, its oxide, hydroxide, or sulfide, the 
process is called corrosion. The material eventually 

deteriorates as a result of this corrosion process. Due to many 
uses of metals like copper, iron, and aluminum, corrosion is a 
major problem in many different industries [1]. Degradation of 
structures, loss of materials, and financial consequences are 
some of the negative outcomes of corrosion. Frequently used as 
an economical and effective remedy, inhibitors are used to lessen 
corrosion [2-5]. Because of their distinct chemical makeup and 
ability for interaction with metal surfaces, cysteine molecules 
have become one of the most promising sets of inhibitors for the 
control of corrosion [6]. Cysteine (Cy) is an amino acid, a 
building block of proteins, with the chemical formula 
C3H7NO2S. It contains a thiol (-SH) functional group, which 
makes it unique among the amino acids. This thiol group is 
responsible for cysteine's ability to form disulfide bonds with 
other cysteine residues, contributing to the structure and 
stability of proteins [7]. Hence Cysteine (Cy) is a powerful 
antioxidant that helps protect cells from damage caused by 
reactive oxygen species and its residues most at times active sites 
of enzymes, which participate in catalysis [8]. It is possible that 
cysteine can also be essential in the prevention of metals such as 
Aluminium, Iron and Copper in essential. 

Despite extensive research in corrosion inhibition, there 
remain gaps in understanding the precise mechanisms by which 
inhibitors such as cysteine function on metal surfaces. 
Additionally, while cysteine has shown promise as a corrosion 
inhibitor, its effectiveness on different metals, particularly 
aluminium, iron, and copper, is not thoroughly elucidated using 
computational methods like Fukui function and frontier 
energies at atomic level. Moreover, the optimization of inhibitor 
concentrations and environmental conditions for maximum 
efficacy presents a challenge. These gaps and limitations 
underscore the need for further investigation into the corrosion 
inhibition mechanisms of cysteine on aluminium, iron, and 
copper surfaces [9-12]. 

In addressing the aforementioned gaps and limitations, the 
hypothesis of utilizing Density Functional Theory (DFT) and 
simulation techniques emerges as a promising approach. DFT, a 
computational quantum mechanical modeling method, offers 
insights into the electronic structure and properties of molecules 
and materials at the atomic level. By employing DFT 
simulations, we hope to explore the adsorption behavior of 
cysteine molecules on aluminium, iron, and copper surfaces 
taking consideration of the binding energy of the molecule 
cysteine on the various surfaces Fe(111)-CTN, Al(110)-CTN and 
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 This research employs Density Functional Theory (DFT) to explore the corrosion inhibition 
properties of the molecule Cysteine (Cy) on Fe(110), Al(110), and Cu(110) surfaces. Through an 
analysis of the interactions between Cysteine (Cy) and each metal surface, pivotal binding sites and 
corresponding binding energies were identified. Our investigation highlights the significance of the 
Fukui Nucleophilic site O5 and Electrophilic site S6 in the inhibition process. The negative binding 
energy observed reflects system stability, indicative of energy release and a transition to a lower-
energy state, commonly seen in atomic and molecular systems. Notably, variations in binding 
energies across different metal surfaces were observed, with Fe(110) exhibiting the highest binding 
energy (-52.75), followed by Al(110) (-30.58), and Cu(110) (-26.24). These findings deepen our 
understanding of corrosion inhibition mechanisms, offering valuable insights for the development of 
efficient corrosion inhibitors like Cysteine. 
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Cu(110)-CTN, thereby elucidating the mechanisms of corrosion 
inhibition. 

The hypothesis posits that cysteine molecules interact with 
metal surfaces through coordination bonds, forming a protective 
barrier that impedes the corrosion process. DFT calculations can 
provide valuable information regarding the adsorption energy, 
charge transfer, and electronic structure of the cysteine-metal 
interface, facilitating a comprehensive understanding of the 
inhibition mechanism. Furthermore, molecular dynamics 
simulations can complement DFT calculations by simulating the 
dynamic behavior of cysteine molecules in corrosive 
environments. These simulations can elucidate the diffusion 
kinetics of cysteine on metal surfaces, as well as its interactions 
with corrosive species, thereby providing insights into the long-
term effectiveness of cysteine as a corrosion inhibitor. 

Scheme 1. Structure of Cysteine (Cy). 
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The proposed utilization of Density Functional Theory and 
simulation techniques offers a systematic approach to investigate 
the corrosion inhibition of aluminium, iron, and copper using 
cysteine molecules. By elucidating the underlying mechanisms 
and optimizing inhibitor-metal interactions, this research can 
contribute to the development of more efficient corrosion 
mitigation strategies in various industrial applications. 

2. Materials and Methods 

2.1 Density Functional Method 

Quantum chemical calculations were conducted using the 
DMol3 module within the BIOVIA Material Studio 8.0 program 
(Accelrys, Inc.), employing the underlying principles of Density 
Functional Theory (DFT). The B3LYP function was applied to 
compute the parameters, utilizing a basis set of "double-numeric 
polarization" (DNP) in the gas phase model [11-16]. The 
calculation encompassed determining the Frontier energies of 
the molecule SO2 with equation 1-11 in accordance with the 
extended Koopman's theorem. These equations elucidate the 
initial electron distribution in the molecule and the computation 
of local reactivity, specifically the Fukui function f(r), through 
ab-initio quantum chemistry methods [17-19]. Before 
establishing their stable geometry, the molecules were drawn 
using ChemDraw Ultra 7.0.3 by Cambridge Software [20]. 

 
IE: Ionization energy (eV)    IE = −EHOMO     (1) 
AE: Electron affinity (eV)    AE = −ELUMO     (2) 
ΔEg: Energy gap (eV)     ΔEg = ELUMO−EHOMO     (3) 

χ: absolute electronegativity (eV)   χ=𝑰𝑰𝑰𝑰+𝑨𝑨𝑰𝑰
𝟐𝟐

=− (𝑰𝑰𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯+ 𝑰𝑰𝑳𝑳𝑳𝑳𝑯𝑯𝑯𝑯)
𝟐𝟐

    (4) 

ղ: global hardness (eV)    ղ = 𝑰𝑰𝑰𝑰−𝑨𝑨𝑰𝑰
𝟐𝟐

 = (𝑰𝑰𝑳𝑳𝑳𝑳𝑯𝑯𝑯𝑯−𝑰𝑰𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯)
𝟐𝟐

    (5) 

σ: global softness (eV)-1    𝝈𝝈 =  𝟏𝟏
𝜼𝜼

= − 𝟐𝟐
𝑰𝑰𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯− 𝑰𝑰𝑳𝑳𝑳𝑳𝑯𝑯𝑯𝑯

    (6) 

ω: global electrophilicity index (eV)   𝝎𝝎 = µ𝟐𝟐

𝟐𝟐𝛈𝛈
 = 𝝌𝝌𝟐𝟐

𝟐𝟐𝜼𝜼
     (7) 

µ: chemical potential (Debye)   µ ≈ -𝟏𝟏
𝟐𝟐

(𝑰𝑰𝑰𝑰 + 𝑨𝑨𝑰𝑰) =  𝟏𝟏
𝟐𝟐

(ELUMO+EHOMO)   (8) 

𝛆𝛆: nucleophilicity(eV)-1    𝜺𝜺 = 𝟏𝟏
𝝎𝝎

      (9) 

ΔEb-d: Energy of back donation   ∆𝑰𝑰𝒃𝒃−𝒅𝒅 =  −𝜼𝜼
𝟒𝟒

=  𝟏𝟏
𝟖𝟖

(𝑰𝑰𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 −  𝑰𝑰𝑳𝑳𝑳𝑳𝑯𝑯𝑯𝑯)          (10) 

ΔN: Fraction of electron(s) transfer     ΔN = 𝝌𝝌𝑯𝑯𝝌𝝌−𝝌𝝌𝑰𝑰𝝌𝝌𝝌𝝌.
𝟐𝟐(ղ𝑯𝑯𝝌𝝌+ղ𝑰𝑰𝝌𝝌𝝌𝝌)

                                       (11) 

 
The inhibitor molecule's absolute hardness, denoted as ηinh, 

and absolute electronegativity, represented by χinh, are 
comparable to those of Fe, Al, and Cu. In theory, the global 
hardness of iron, Aluminium and Copper surfaces are all equals 
0 eV, and the electronegativity of bulk iron is χFe = 7.0 eV, χAl 
=5.6eV and χCu= 4.5ev assuming a higher density for metallic 
bulk compared to neutral metallic atoms [21–23]. The 
distinction between nucleophilic and electrophilic local Fukui  

 
functions lie in the definition of the Fukui second function (f2), 
also referred to as the dual descriptor Δf(k). These functions, 
based on the Fukui behavior of atoms, determine the 
electrophilicity or nucleophilicity of molecules [25]. If f2(r) > 0, 
site k favors a nucleophilic attack, whereas if f2(r) < 0, site k 
favors an electrophilic attack. Thus, f2(r) serves as a selectivity 
index for determining whether attacks are electrophilic or 
nucleophilic. 

𝒇𝒇(𝒌𝒌)+   =  𝒒𝒒𝒌𝒌(𝑵𝑵 + 𝟏𝟏) − 𝒒𝒒𝒌𝒌(𝑵𝑵) (for nucleophilic attack)    (12) 
𝒇𝒇(𝒌𝒌)-    = 𝒒𝒒𝒌𝒌(𝑵𝑵) − 𝒒𝒒𝒌𝒌(𝑵𝑵− 𝟏𝟏) (for electrophilic attack)    (13) 

𝒇𝒇(k)0  = 𝒒𝒒𝒌𝒌(𝑵𝑵+𝟏𝟏)−𝒒𝒒𝒌𝒌(𝑵𝑵−𝟏𝟏)
𝟐𝟐

  (for radical attack)     (14) 

𝜟𝜟𝒇𝒇(𝒌𝒌) = 𝒇𝒇+-𝒇𝒇- = 𝒇𝒇2            (Fukui function)     (15) 
In this context, N represents the total number of electrons in 

the molecule, while N+1 denotes an anion formed by adding an 
electron to the Lowest Unoccupied Molecular Orbital (LUMO) 
of the neutral molecule, and N-1 signifies a cation formed by 
removing an electron from the Highest Occupied Molecular 
Orbital (HOMO) of the neutral molecule. The variable qk 

represents the net charge of atom k within the molecule, 
reflecting the electron density at a specific point r in space 
surrounding the molecule. The initial ground state geometry was 
utilized as the reference point for all subsequent calculations. 
Employing an atomic charge partitioning method, such as 
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Mulliken population analysis outlined in Equations, these 
functions were concentrated on the nuclei of the atoms [24-25]. 

2.2 Molecular Dynamic Simulations 

To mimic the behavior of the SO2 molecule on closely 
packed surfaces of Fe (111), Fe(110), and Fe(100) atoms, a 
quench adsorption method known for its high stability was 
employed. This simulation was conducted using the FORCITE 
tool package integrated into the BIOVIA Materials Studio 8.0 
software (Accelrys, Inc.). The simulation employed the 
COMPASS force field tool and the Smart algorithm approach 
within a simulation box measuring 17Å x 12Å x 28Å, aiming to 
model a representative surface area [28]. The Fe crystals were 
cleaved along the (111), (110), and (100) planes at a fractional 
depth of 3.0 Å, and the form of the bottom layers was fixed 
before surface optimization to mitigate edge effects stemming 
from molecular sizes. A 3x3 supercell was then generated by 
extending the surfaces. By maintaining a temperature of 350K, a 

balance was struck between excessive kinetic energy causing 
molecule desorption and insufficient kinetic energy hindering 
molecule movement across the surface [13,23]. The simulation, 
conducted over 5 ps with a time step of 1 fs, employed the NVT 
(microcanonical) ensemble to control temperature. The 
quenching process occurred every 250 steps for a total of 5000 
cycles to ensure statistical accuracy of energy values on the Fe 
crystal surfaces examine. Utilizing FORCITE, the lowest energy 
interactions between molecules and Fe (111) surfaces were 
determined through geometry optimization [24-27]. 

Equations (16-17) were utilized to calculate the adsorption 
and binding energies of the SO2- Fe- surface. 

EA = ET – (EI + ES)    (16) 
EB = - EA    (17) 
Where EA is the adsorption energy, ET is the combined 

energy of the molecule and the iron surface, ES is the energy of 
the iron surface, EI is the energy of the inhibitor molecule 
without the iron surface and EB is the binding energy [23-28]. 

3. Results and Discussion 

3.1 Frontier Energy

In DFT studies of corrosion inhibition, optimizing the 
molecular structure, understanding the electron density 
distribution, and tuning the energy levels of the HOMO and 

LUMO orbitals are essential for predicting and enhancing the 
effectiveness of inhibitor molecules [27-30]. 

 

Optimized molecule 
 

Density of the molecule 

  

HOMO Orbitals LUMO orbitals 

  
Figure 1: Optimized, Density, HOMO and LUMO orbitals of the molecule 

In the context of corrosion inhibition, the energy levels of 
the HOMO and LUMO orbitals influence the ability of the 
inhibitor molecule to donate or accept electrons during the 
adsorption process onto the metal surface [37]. A lower energy 
HOMO indicates a better ability to donate electrons, facilitating 
adsorption onto the metal surface, while a higher energy LUMO 

suggests a greater ability to accept electrons, which can stabilize 
the adsorbed molecule. In Table 2 of the study, it can be seen 
that, the EHOMO value and the ELUMO values are in line with 
the study obtained by Zarrouk et al, Eddy and Ebenso, 
Abdulfatai et al [3, 9 and 10].  
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HOMO-LUMO gap, is an important parameter in 
determining the corrosion inhibition efficiency of a molecule in 
the following ways: energy gap between these orbitals is 
indicative of the molecule's ability to donate or accept electrons, 
which is crucial for its corrosion inhibition effectiveness. In the 
context of corrosion inhibition, an inhibitor with a narrow 
energy gap tends to have enhanced donor-acceptor properties, 
allowing it to readily interact with metal surfaces and adsorb 
onto them, thereby forming a protective barrier against 
corrosion [38-39]. A smaller energy gap often correlates with 
stronger adsorption due to increased electronic interactions 
between the inhibitor and the metal surface [39]. This strong 
adsorption helps stabilize the inhibitor layer on the metal 
surface, enhancing its corrosion inhibition efficiency. These can 
help with creating novel corrosion inhibitors with improved 
properties. In the study, the energy gap obtained by Cy is less 
than the energy gap obtained by Belghiti [16] on the simulation 
and statistical analysis on the relationship between corrosion 
inhibition efficiency and molecular structure of some hydrazine 
derivatives in phosphoric acid on mild steel surface. 

Inhibitors with higher ionization energies tend to be more 
stable as they are less likely to undergo electron loss and 
subsequent degradation when interacting with metal surfaces. 
DFT calculations can predict the ionization energies of inhibitor 
molecules and correlate them with their ability to donate 
electrons, thereby influencing their corrosion inhibition 
efficiency [40-42]. On the other hand, inhibitors with higher 
electron affinities have a greater tendency to accept electrons 
from the metal surface, forming a stable protective layer [42]. 
While Inhibitors with higher electron affinities are more likely to 
form strong interactions with metal atoms, leading to enhanced 
adsorption and corrosion inhibition [43]. In the study as 
presented in Table 2, the values of I.E and A.E are in the limit of 
inhibitors that can form strong adsorption on the surface of 
metal.  According to Mohammed and Rubba, Mammeri et al 
[22,23] incorporating ionization energy and electron affinity 
analyses through DFT into corrosion studies provides valuable 
insights into the electronic properties of inhibitor molecules and 
their interactions with metal surfaces. This knowledge can be 
leveraged to design and optimize corrosion inhibitors with 
enhanced effectiveness and stability. 

According to Basma and Hadi [18], a hard molecule has low 
basicity and low electron-donating potential, while a soft 
molecule has high basicity and high electron-donating potential. 
The result of the study is in line with the study obtained by the 
Basma and Hadi. Also the result show that, 3.6065 eV of χ shows 
a large number of electron transfers while 1.9195 eV of ղ is 
small., indicating that Incorporating hardness and softness 
analyses through DFT into corrosion inhibition studies offers a 
comprehensive understanding of the electronic structure and 
reactivity of inhibitor molecules. The electrophilicity index (ω) 
represents a molecule's ability to accept electrons, while 
nucleophilicity (ε), the reciprocal of electrophilicity (1/ω), 
indicates a molecule's inclination to donate or exchange 
electrons. These indices offer quantitative assessments of 
electron-accepting and donating capabilities, respectively, 
playing a vital role in comprehending and foreseeing reactivity 
in organic chemistry. The values of these parameters for Cy in 
Table 2 exhibit a strong correlation, as noted in in research 
carried out by Kadhim et al. [32]. 

The effect of the fraction of electrons transferred (∆N) on 
the corrosion inhibition can be seen in the values of fraction of 
electrons transferred (∆N) in Table 2 of the Cy molecule on 
different surfaces using bulk. The higher the value of (∆N), the 
greater the impact on the cell potential. In Table 2 Aluminum 

(Al) was recorded n = 0.9967 eV, iron (Fe) ∆N = 0.8839eV and 
copper (Cu) ∆N = 0.2327eV. The effect of corrosion inhibition 
will be greatest for aluminum, followed by iron, and then 
copper. This is because higher values of (∆N) correspond to a 
greater change in cell potential, thus indicating a stronger 
impact on the inhibition of corrosion [44]. 

 
Table 2: Frontier energy parameters of the molecule Cysteine 
Energy parameters eV 

EHOMO (eV) -5.526 

ELUMO (eV) -1.687 

∆E (eV) 3.839 

IE (eV) 5.526 

AE (eV) 1.687 

χ (eV) 3.6065 

ղ (eV) 1.9195 

σ (eV)-1 0.52097 

∆NFe 0.8839 

∆NAl 0.9967 

∆NCu 0.2327 

ω (eV) 1.694 

∆Eb-d (eV) -0.4799 

ε (eV)-1 0.59032 

3.2 Fukui 

Fukui parameters, derived from conceptual density 
functional theory (DFT), provide insights into the reactivity of 
molecules by predicting how they may undergo nucleophilic or 
electrophilic attacks. These parameters are particularly useful in 
understanding the sites on a molecule that are most susceptible 
to chemical reactions. In the context of corrosion inhibition, 
Fukui parameters can help identify which parts of a molecule are 
likely to interact most strongly with the metal surface, thereby 
influencing its inhibition efficiency [31-32]. 

In this research, oxygen (O) has the highest positive Fukui 
parameter value (Fukui (+)), while sulfur (S) has the highest 
negative Fukui parameter value (Fukui(-)). A high positive 
Fukui parameter value for oxygen suggests that it is highly 
susceptible to nucleophilic attacks. In the context of corrosion 
inhibition, this could imply that oxygen atoms in the inhibitor 
molecule are likely to donate electrons to the metal surface, 
forming a protective layer that inhibits corrosion. Oxygen-
containing functional groups, such as hydroxyl (-OH) or 
carbonyl (C=O) groups, are commonly found in corrosion 
inhibitor molecules due to their ability to interact with metal 
surfaces through coordination or hydrogen bonding [33]. The 
high positive Fukui parameter for oxygen supports the notion 
that these functional groups can play a crucial role in corrosion 
inhibition for cysteine. 

Also, a high negative Fukui parameter value for sulfur 
suggests that it is highly susceptible to electrophilic attacks. In 
the context of corrosion inhibition, this imply that sulfur atoms 
in the inhibitor molecule are likely to accept electrons from the 
metal surface or other species present in the corrosive 
environment [34-35]. Sulfur-containing functional groups, such 
as thiol (-SH) or thione (C=S) groups, are also commonly found 
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in corrosion inhibitor molecules due to their ability to form 
coordination bonds with metal ions or adsorb onto metal 
surfaces through sulfur-metal interactions [36]. The high 
negative Fukui parameter for sulfur supports the importance of 

these functional groups in corrosion inhibition. The second 
Fukui function indicated that, the molecule Cy is a nucleophile 
molecule which donate electron to the metal surfaces [37] this is 
graphically represented in Figure 2. 

Table 1: The Fukui parameters of the molecule. 
 

(Fukui(+)) 
 

(Fukui(-)) 
   

atom Mulliken Hirshfeld Mulliken   Hirshfeld f2(Mulliken) f2(Hirshfeld) 

 C (1) 0.156 0.229 0.035 0.021 0.121 0.208 

 N (2) 0.082 0.04 0.178 0.231 -0.096 -0.191 

 C (3) -0.047 0.018 -0.012 0.044 -0.035 -0.026 

 C (4) 0.016 0.017 -0.062 0.026 0.078 -0.009 

 S (5) 0.032 0.068 0.356 0.306 -0.324 -0.238 

 O (6) 0.315 0.273 0.029 0.032 0.286 0.241 

 O (7) 0.166 0.152 0.019 0.03 0.147 0.122 

 

 

 

Figure 2: The graphical representation of the Second function (f2) parameter of the molecule. 

3.3 Simulation 

Simulation is crucial in corrosion studies, offering essential 
insights and forecasts regarding corrosion processes and the 
efficacy of corrosion inhibition tactics. Through modeling 
material interactions with electrolytes and environmental 
elements, simulations clarify the mechanisms governing 
corrosion initiation, propagation, and mitigation [45-48]. 
Furthermore, by integrating kinetic and thermodynamic 
principles, simulations offer numerical estimates of corrosion 
rates, aiding in the evaluation of material degradation over time. 
Moreover, simulations contribute to cost-effectiveness by 
diminishing the necessity for extensive laboratory experiments 
[49-50]. This expedites research and minimizes resource 

expenditure while yielding valuable insights into corrosion 
phenomena. 

For the reasons mentioned, the binding energy of the 
molecule Cy was tested on the following metals to understand 
the corrosion inhibition behavior of the molecule. From the 
result in Table 3, the binding energies shows that energies is 
released when bonds are formed [51]. The binding energy of the 
system between Fe(110)-Cy was higher followed by Al(110)-Cy 
and then Cu(110)-Cy. The negative value of the binding energy 
is commonly seen in systems where atoms forming molecules or 
nucleons binding together in atomic nuclei. In these cases, the 
negative binding energy reflects the stability of the system, as 
energy is released and the system moves to a lower-energy state 
[52]

 

 C (1)  N (2)  C (3)  C (4)  S (5)  O (6)  O (7)

f2(Mulliken) 0.121 -0.096 -0.035 0.078 -0.324 0.286 0.147

f2(Hirshfeld) 0.208 -0.191 -0.026 -0.009 -0.238 0.241 0.122
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Table 3. Energies of the Simulation 

Surface Binding energy  Total energy of molecule Adsorption Energy 

Al(110) -30.58 ±0.00 0.00 ± 0.00 30.58 ±0.00 

Fe(110) -52.75 ± 0.15 0.00 ± 0.00 52.75 ± 0.15 

Cu(110) -26.24 ± 0.16 0.00 ± 0.00 26.24 ± 0.16 
 

To assess the accuracy of a model or simulation in 
predicting the extent of corrosion inhibition between the metals 
and the Molecule Cy, Root Mean Square Deviation (RMSD) 
typically refers to a measure of the differences between values 

predicted by a model or simulation and the corresponding 
observed values is presented in the graphical form as shown in 
Figure 3a-c 

A. Al-Cy 

 

B. Fe-Cy 
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C. Cu-Cy 

Figure 3A-C: The Root Mean Square Deviation (RMSD) 

The molecule interaction and the surfaces Fe(110)-Cy,  Al(110)-Cy and Cu(110)-Cy is presented in figure 4. 

   
Al-Cy side View Cu-Cy   Side view Fe-Cy Side View 

Figure 4: The screen short of the molecule interaction with the surfaces of Fe(110)-Cy , Al(110)-Cy and Cu(110)-Cy. 

4. Conclusion 

In conclusion this research employed Density Functional 
Theory (DFT) to investigate the corrosion inhibition properties 
of the molecule Cy on Fe(110), Al(110), and Cu(110) surfaces. 
By analyzing the interactions between Cy and each metal 
surface, we identified key binding sites and evaluated the 
corresponding binding energies. Our findings highlight the 
significance of the Fukui Nucleophilic site O5 and Electrophilic 
site S6 as pivotal in the inhibition process. The negative value of 
the binding energy is commonly seen in systems where atoms 
forming molecules or nucleons binding together in atomic 
nuclei. In these cases, the negative binding energy reflects the 
stability of the system, as energy is released and the system 
moves to a lower-energy state. Moreover, we observed distinct 
variations in binding energies across the different metal surfaces, 
with Fe(110) exhibiting the highest binding energy (-52.75), 
followed by Al(110) (-30.58), and Cu(110) (-26.24). These 
insights contribute to a deeper understanding of the corrosion 
inhibition mechanisms and provide valuable guidance for future 
research in the development of efficient corrosion inhibitors like 
Cysteine. 
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