Insights into Adsorbents: Activated Carbon for Effective Adsorption

Downloads

Download the Article:

Authors

  • Deepshikha Singh Department of Chemical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh 273010 https://orcid.org/0000-0001-8221-3103
https://doi.org/10.55559/jjbrpac.v1i2.233

Keywords:

Adsorption, adsorbent, activated carbon, biomass

Abstract

This review highlights the exploration of activated carbon with transformative capabilities of activated carbon but also outlines potential avenues for further research, contributing to the ongoing quest for sustainable and effective adsorption technologies. From traditional precursors like coal and wood to emerging materials such as agricultural residues and waste biomass, we explore the diverse origins of activated carbon. Synthesis methods, structural characteristics, and adsorption mechanisms associated with these sources are systematically examined, providing a comprehensive understanding of the pivotal role played by activated carbon in addressing contemporary environmental challenges.

References

Abbas, A. F., & Ahmed, M. J. (2014). Optimization of Activated Carbon Preparation from Date Stones by Microwave Assisted K2CO3 Activation. Iraqi Journal of Chemical and Petroleum Engineering, 15(1), 33-42. https://doi.org/10.31699/IJCPE.‌2014.1.4

Abechi, E. S., Gimba, C. E., Uzairu, A., & Kagbu, J. A. (2011). Kinetics of adsorption of methylene blue onto activated carbon prepared from palm kernel shell. Archives of Applied Science Research, 3(1), 154-164.

Acharya, J., Sahu, J.N., Mohanty, C.R., & Meikap, B.C. (2009). Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal, 149, 249-262. https://doi.org/10.1016/j.cej.2008.10.029

Alau, K. K., Gimba, C. E., Kagbu, J. A., & Nale, B. Y. (2010). Preparation of Activated Carbon from Neem (Azadirachta indica) Husk by Chemical Activation with H3PO4, KOH and ZnCl2. Archives of Applied Science Research, 2(5), 451-455.

Arivoli, S., Hema, M. P., & Manju, N. (2010). Adsorption dynamics of methylene blue by acid activated carbon. Journal of Chemical and Pharmaceutical Research., 2(5), 626-641.

Azevedo, D. C. S., Araujo, J. C. S., Bastos-Neto, M., Torres, A. E. B., Jaguaribe, E. F., & Cavalcante, C. L. (2007). Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous and Mesoporous Materials, 100, 361-364. http://dx.doi.org/10.1016%2Fj.‌micromeso.2006.11.024

Baek, K., Yang, J., & Kwon, T. (2007). Cationic starch-enhanced ultrafiltration for Cr(VI) removal. Desalination, 206, 245-250. https://doi.org/10.1016/j.desal.2006.03.568

Chen, Y., Zhu, Y., Wang, Z., Li, Y., Wang, L., Ding, L., Gao, X., Ma, Y., & Guo, Y. (2011). Application studies of activated carbon derived from rice husks produced by chemical-thermal process: A review. Advances in Colloid and Interface Science, 63(1), 39-52. https://doi.org/10.1016/j.cis.2011.01.006

Cheung, W. H., Lau, S. S. Y., Leung, S. Y., Ip, A. W. M., & McKay, G. (2012). Characteristics of chemical modified activated carbons from bamboo scaffolding. Chinese Journal of Chemical Engineering, 20(3), 515–523. https://doi.org/10.1016/S1004-9541(11)60213-9

Cronje, K. J., Chetty, K., Carsky, M., Sahu, J. N., & Meikap, B. C. (2011). Optimization of chromium (VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination, 275(1–3), 276-284. https://doi.org/10.1016/j.desal.2011.03.019

Fierro, V., Muniz, G., Basta, A. H., El-Saied, H., & Celzard, A. (2010). Rice straw as a precursor of activated carbons: Activation with ortho-phosphoric acid. Journal of Hazardous Materials, 181, 27-34. https://doi.org/10.1016/j.jhazmat.‌2010.04.062

Guo, Y., & Rockstraw, D. A. (2007). Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous and Mesoporous Materials, 100, 12-19. https://doi.org/‌10.1016/j.micromeso.2006.10.006

Halyal, U.A., Pal, S., Sharma, K., Tyagi, R., Yusuf, M. (2023). Adsorption and Kinetic Studies of Polyacrylamide (PAA) Hydrogels for Efficient Removal of Methylene Blue (MB) in Aqueous Media. Biointerface Research in Applied Chemistry, 13 (6), 1-10. https://doi.org/10.33263/BRIAC136.570

Huang, C. C., Chen, H. M., Chen, C. H., & Huang, J. C. (2010). Effect of surface oxides on hydrogen storage of activated carbon. Separation and Purification Technology, 70, 291–295. https://doi.org/10.1016/j.seppur.2009.10.009

Ju, L., Tang, X., Li, X., Liu, B., Qiao, X., Wang, Z., & Yin, H. (2023). NO2 Physical-to-Chemical Adsorption Transition on Janus WSSe Monolayers Realized by Defect Introduction. Molecules, 28(4), 1644. https://doi.org/10.3390/molecules28041644

Kalderis, D., Bethanis, S., Paraskeva, P., & Diamadopoulos, E. (2008). Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresource Technology, 99, 6809–6816. https://doi.org/10.1016/j.biortech.2008.01.041

Kumar, K. V., & Kumaran, A. (2005). Removal of methylene blue by mango seed kernel powder. Biochemical Engineering Journal, 27, 83–93. https://doi.org/10.1016/j.bej.2005.08.004

Kwaghger, A., & Ibrahim, J. S. (2013). Optimization of conditions for the preparation of activated carbon from mango nuts using HCl. American Journal of Engineering Research, 2(7), 74-85. Retrieved from https://www.ajer.org/papers/v2(7)/‌J0277485.pdf

Lazaro, M. J., Galvez, M. E., Artal, S., Palacios, J. M., & Moliner, R. (2007). Preparation of steam-activated carbons as catalyst supports. Journal of Analytical and Applied Pyrolysis, 78(2), 301-315. https://doi.org/10.1016/j.jaap.2006.08.007

Liu, C., Liang, X., Liu, X., Wang, Q., Teng, N., Zhan, L., Zhang, R., Qiao, W., & Ling, L. (2008). Wettability modification of pitch-based spherical activated carbon by air oxidation and its effects on phenol adsorption. Applied Surface Science, 254, 2659-2665. https://doi.org/10.1016/j.apsusc.2007.10.026

Lua, A. C., & Yang, T. (2005). Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. Journal of Colloid and Interface Science, 290, 505-513. https://doi.org/10.1016/j.jcis.‌2005.04.063

Marouane, S., Oumam, N., Abourriche, A., Bennamara, A., & Charrouf, M. (2012). Optimization of activated carbon from residues of oregano using experimental design method. Mediterranean Journal of Chemistry, 5, 210–220. http://dx.doi.‌org/‌10.13171/mjc.1.5.2012.26.02.23

Molina-Sabio, M., Gonzalez, M. T., Rodriguez-Reinoso, F., & Sepulveda, A. (1996). Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon. Carbon, 34(4), 505-509. https://doi.org/10.1016/0008-6223(96)00006-1

Olowoyo D. N., & Orere E. E. (2012). Preparation and Characterization of Activated Carbon Made from Palm-Kernel Shell, Coconut Shell, Groundnut Shell and Obeche Wood (Investigation of Apparent Density, Total Ash Content, Moisture Content, Particle Size Distribution Parameters. International Journal of Research in Chemistry and Environment (IJRCE), 2(3), 32–35. Retrieved from https://ijrce.org/index.php/ijrce/article/view/295

Prahas, D., Kartika, Y., Indraswati, N., & Ismadji, S. (2008). Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal, 140, 32–42. https://doi.org/10.1016/j.cej.2007.08.032

Rahmat, M., Kiran, S., Gulzar, T., Yusuf, M., Nawaz, R., Khalid, J., ... & Azam, M. (2023). Plant-assisted synthesis and characterization of MnO2 nanoparticles for removal of crystal violet dye: an environmental remedial approach. Environmental Science and Pollution Research, 30(20), 57587-57598. https://doi.org/10.1007/s11356-023-26601-5

Shawabkeh, R. S. (2007). Absorption of Phenol and Methylene Blue by Activated Carbon from Pecan Shells. Colloid Journal, 69(3), 355–359. http://dx.doi.org/10.1134/S1061933X07030143

Shindo, K., Kondo, T., & Sakurai, Y. (2005). Influence of milling conditions on hydrogen storage capacities of activated carbon mechanically milled in an H2 atmosphere. Journal of Alloys and Compounds, 397, 216–219. https://doi.org/10.1016/‌j.jallcom.2004.11.074

Srinivasan, A., & Viraraghavan, T. (2010). Oil removal from water by fungal biomass: A factorial design analysis. Journal of Hazardous Materials, 175, 695-702. https://doi.org/10.1016/‌j.jhazmat.2009.10.065

Sudibandriyo, M., (2011). High Pressure Adsorption of Methane and Hydrogen at 25°C on Activated Carbons prepared from Coal & Coconut Shell. International Journal of Engineering and Technology, 11, 79-85.

Sugumaran, P., Priya Susan, V., Ravichandran, P., & Seshadri, S. (2012). Production and Characterization of Activated Carbon from Banana Empty Fruit Bunch and Delonix regia Fruit Pod. Journal of Sustainable Energy & Environment, 3, 125-132.

Suzuki, R. M., Sousa, J., Rollemberg, M. (2007). Preparation and characterization of activated carbon from rice bran. Bioresource Technology, 98, 1985-1991. https://doi.org/‌10.1016/j.biortech.2006.08.001

Tang, C., Zhang, R., Wen, S., Li, K., Zheng, X., & Zhu, M. (2009). Adsorption of hexavalent chromium from aqueous solution on raw and modified activated carbon. Water Environment Research, 81(7), 728-734. https://doi.org/10.2175/‌106143009X407456

Thomas, K. M. (2007). Hydrogen adsorption and storage on porous materials. Catalysis Today, 120, 389–398.

Akasaka, H., Takahata, T., Toda, I., Ono, H., Ohshio, S., Himeno, S., Kokubu, T., Saitoh, H. (2011). Hydrogen storage ability of porous carbon material fabricated from coffee bean wastes. International Journal of Hydrogen Energy. 36(1), 580-585. https://doi.org/10.1016/j.ijhydene.2010.09.102

Umudi, E. Q., & Ukpebor, E. J. (2012). Powdered activated carbon from mango seed (mangifera indica) for uptake of organic compounds from aqueous media. Journal of Biological Science and Bioconservation, 4(9), 63-67.

Wang, H., Gao, Q., & Hu, J. (2009). High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc., 131, 20, 7016–7022. https://doi.org/10.1021/‌ja8083225

Yang, S. J., Jung, H., Kim, T., & Park, C. R. (2012). Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Progress in Natural Science: Materials International, 22(6), 631–638. https://doi.org/10.1016/j.pnsc.2012.11.006

Yang, T., & Lua, A. C. (2006). Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells. Materials Chemistry and Physics, 100, 438-444. https://doi.org/10.1016/j.matchemphys.2006.01.039

Yusuf, M., Shabbir, M., & Mohammad, F. (2017). Natural colorants: Historical, processing and sustainable prospects. Natural Products and Bioprospecting, 7, 123-145. https://doi.org/‌10.1007/s13659-017-0119-9

Yusuf, M., Sharma, S., Khan, S.A., Prasad, L. (2023a). Current applications of biomolecules as anticoronavirus drugs. Handbook of Biomolecules, Springer, Cham, pp. 355-369.

Yusuf, M., Pal, S., Shahid, M., Asif, M., Khan, S.A., Tyagi, R. (2023b). Docking and ADMET Study of ArTurmerone: Emerging Scaffold for Acetylcholine Esterase Inhibition and Antidiabetic Target. J. Appl. Organometallic Chem., 3(1), 1-11. https://doi.org/10.22034/jaoc.2023.384164.1070

Yusuf, M. (2023). Insights into the in-silico research: Current scenario, advantages, limits, and future perspectives. Life in Silico, 1(1), 13-25. https://orcid.org/0000-0003-0927-8490

Zhang, C., Lu, X. S., & Gu, A. Z. (2004). Hexavalent chromium removal from aqueous solution by algal bloom residue-derived activated carbon: Equilibrium and kinetic studies. International Journal of Hydrogen Energy, 29(12), 1271–1276. https://doi.org/10.1016/j.jhazmat.2010.05.084

Zhang, J., Fu, H., Lv, X., Tang, J., & Xu, X. (2011). Removal of Cu(II) from aqueous solution using the rice husk carbons prepared by the physical activation process. In Biomass and Bioenergy (Vol. 35, Issue 1, pp. 464–472). Elsevier BV. https://doi.org/10.1016/j.biombioe.2010.09.002

Zhao, J., Yang, L., Li, F., Yu, R., & Jin, C. (2009). Structural evolution in the graphitization process of activated carbon by high-pressure sintering. Carbon, 47, 744-751. https://doi.org/‌10.1016/j.carbon.2008.11.006

Zuo, S., Yang, J., Liu, J., & Cai, X. (2009). Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material. Fuel Processing Technology, 90, 994-1001. https://doi.org/10.1016/j.fuproc.2009.04.003

Published on: 2024-04-08

Also Available On

Note: Third-party indexing sometime takes time. Please wait one week or two for indexing. Validate this article's Schema Markup on Schema.org

How to Cite

Singh, D. (2024). Insights into Adsorbents: Activated Carbon for Effective Adsorption. Jabirian Journal of Biointerface Research in Pharmaceutics and Applied Chemistry, 1(2), 11–21. https://doi.org/10.55559/jjbrpac.v1i2.233

Issue

Section

Review Article
2584-2536