Effect of hydroxytyrosol on the peroxidation of equine erythrocyte membranes by chemiluminescence

Downloads

Download the Article:

Authors

  • María B. Ventura Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CC296 (1900) La Plata, Buenos Aires, Argentina
  • Javier L. Barberón Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CC296 (1900) La Plata, Buenos Aires, Argentina https://orcid.org/0000-0001-9993-832X
  • Juan Cerdan Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CC296 (1900) La Plata, Buenos Aires, Argentina
  • Patricio J. Leaden Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CC296 (1900) La Plata, Buenos Aires, Argentina
  • Pedro A. Zeinstege Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CC296 (1900) La Plata, Buenos Aires, Argentina https://orcid.org/0000-0001-5186-9804
  • Alejandro Palacios Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata,
https://doi.org/10.55559/jjbrpac.v1i4.308

Keywords:

HT, equine erythrocyte membranes, Antioxidants, Peroxidation, Chemiluminescence

Abstract

Hydroxytyrosol (HT) is a polyphenol with a strong antioxidant effect, which is why it is being evaluated to improve animal and human health. The risk of injuries and performance of sporting horses are associated with their antioxidant status. Equine erythrocyte membranes are used as a peroxidation test model, due to their high content of double-linked fatty acids. Chemiluminescence is one of the most used methods to evaluate membrane peroxidation, due to its sensitivity and specificity. The objective of this work was to investigate the antioxidant effect of HT (POLYPHENOL - HT 1® Nova Mentis Ltd, Ireland) on the peroxidation of equine erythrocyte membranes. Erythrocyte membranes, also called ghosts, were adjusted to 1 mg of protein and challenged in a tert-butyl hydroperoxide (t-BHP)-dependent pro-oxidant model, at a 2 mM concentration and at 37 °C. Protection against peroxidation generated with HT (200 µM) was evaluated on it. Peroxidation of the ghosts was quantified in a Packard 1900 TR liquid scintillation counter using chemiluminescence in counts per minute (cpm). A completely randomized experimental design was used with the following groups: Control group (only erythrocyte membranes), 2mM t-BHP group (erythrocyte membranes + prooxidant substance) and HT group (erythrocyte membranes + prooxidant substance + HT200 µM). It was observed that the chemiluminescence value was statistically higher in the 2mM t-BHP group than in the Control, while the HT group showed an increasing reduction in chemiluminescence. The results of ten independent determinations per group show the mean and its standard deviation of the averages of 11224±2002 cpm (Control); 22000±3925 cpm (t-BHP 2mM) and 12784±2281 cpm (HT 200 μM). Data were statistically evaluated using one-way analysis of variance (ANOVA) and Tukey's test.In conclusion, HT protected equine erythrocyte membranes from peroxidation.  

References

Kinnunen S, Hyyppä S, Lehmuskero A, Oksala N, Mäenpää P, Hänninen O, et al. Oxygen radical absorbance capacity (ORAC) and exercise-induced oxidative stress in trotters. Eur J Appl Physiol [Internet]. 2005;95(5–6):550–6. Available from: http://dx.doi.org/10.1007/s00421-005-0034-3

García EIC, Elghandour MMMY, Khusro A, Alcala-Canto Y, Tirado-González DN, Barbabosa-Pliego A, et al. Dietary supplements of vitamins E, C, and β-carotene to reduce oxidative stress in horses: An overview. J Equine Vet Sci [Internet]. 2022;110(103863):103863. Available from: http://dx.doi.org/10.1016/j.jevs.2022.103863

Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem [Internet]. 2017;524:13–30. Available from: http://dx.doi.org/10.1016/‌j.ab.2016.10.021

Gondim, FJ, Zoppi CC, dos Reis Silveira L, Pereira-da-Silva L, Vaz de Macedo D. Possible relationship between performance and oxidative stress in endurance horses. J Equine Vet Sci [Internet]. 2009;29(4):206–12. Available from: http://dx.doi.org/10.1016/j.jevs.2009.02.006

Lang F, Abed M, Lang E, Föller M. Oxidative stress and suicidal erythrocyte death. Antioxid Redox Signal [Internet]. 2014;21(1):138–53. Available from: http://dx.doi.org/10.1089/‌ars.2013.5747

Parashar R, Singla LD, Gupta M, Sharma SK. Evaluation and correlation of oxidative stress and haemato-biochemical observations in horses with natural patent and latent trypanosomosis in Punjab state of India. Acta Parasitol [Internet]. 2018;63(4):733–43. Available from: http://dx.doi.org/10.1515/ap-2018-0087

Williams CA, Carlucci SA. Oral vitamin E supplementation on oxidative stress, vitamin and antioxidant status in intensely exercised horses. Equine Vet J [Internet]. 2006;38(S36):617–21. Available from: http://dx.doi.org/10.1111/j.2042-3306.2006.‌tb05614.x

Clavé AN, De Armentia Osés LL, Achiaga JF, Sanz A. Potential benefits of maternal Hydroxytyrosol supplementation during late pregnancy on calf growth. ResearchGate [Internet]. 2022 Oct 20; Available from: https://www.researchgate.net/‌publication/381409333_Potential_benefits_of_maternal_Hydroxytyrosol_supplementation_during_late_pregnancy_on_calf_growth

Shan C, Miao F. Immunomodulatory and antioxidant effects of hydroxytyrosol in cyclophosphamide-induced immunosuppressed broilers. Poult Sci [Internet]. 2022;101(1):101516. Available from: http://dx.doi.org/10.1016/‌j.psj.2021.101516

Laviano HD, Gómez G, Escudero R, Nuñez Y, García-Casco JM, Muñoz M, et al. Maternal supplementation of vitamin E or its combination with hydroxytyrosol increases the gut health and short chain fatty acids of piglets at weaning. Antioxidants (Basel) [Internet]. 2023;12(9):1761. Available from: http://dx.doi.org/10.3390/antiox12091761

Gargouri, B., Hamden K, Mseddi M, Nasr R, Allouch N, Lassoued S. Suppressive effects of Hydroxytyrosol on oxidative stress in erythrocytes. Journal of Medicinal Plants Research [Internet]. 2013 Dec 31;7(47):3427–31. Available from: https://academicjournals.org/journal/JMPR/article-abstract/B3FBDE642320

Cimen MYB. Free radical metabolism in human erythrocytes. Clin Chim Acta [Internet]. 2008;390(1–2):1–11. Available from: http://dx.doi.org/10.1016/j.cca.2007.12.025

Gallo G, Bruno R, Taranto A, Martino G. Are polyunsaturated fatty acid metabolites, the protective effect of 4-hydroxytyrosol on human red blood cell membranes and oxidative damage (4-hydroxyalkenals) compatible in hypertriglyceridemic patients? Pharmacogn Mag [Internet]. 2017;13(51):561. Available from: http://dx.doi.org/10.4103/pm.pm_483_15

Catalá A. An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol [Internet]. 2006;38(9):1482–95. Available from: http://dx.doi.org/10.1016/j.biocel.2006.02.010

Ventura MB, Barberon JL, Leaden PJ, Zeinsteger PA, Palacios A. Antioxidant activity of hydroxytyrosol in the peroxidation of rat liver mitochondria: Evaluation. Int. J. of Chem. Sci. [Internet]. 2023;7(2):1-4.

Dodge JT, Mitchell C, Hanahan DJ. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys [Internet]. 1963;100(1):119–30. Available from: http://dx.doi.org/10.1016/‌0003-9861(63)90042-0

Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the folin phenol reagent. J Biol Chem [Internet]. 1951;193(1):265–75. Available from: http://dx.doi.org/10.1016/s0021-9258(19)52451-6

Chiaradia E, Avellini L, Rueca F, Spaterna A, Porciello F, Antonioni MT, et al. Physical exercise, oxidative stress and muscle damage in racehorses. Comp Biochem Physiol B Biochem Mol Biol [Internet]. 1998;119(4):833–6. Available from: http://dx.doi.org/10.1016/s0305-0491(98)10001-9

Boffi FM, Cittar J, Balskus G, Muriel M, Desmaras E. Training‐induced apoptosis in skeletal muscle. Equine Vet J [Internet]. 2002;34(S34):275–8. Available from: http://dx.doi.org/10.1111/j.2042-3306.2002.tb05432.x

Alpoim-Moreira J, Fernandes C, Rebordão MR, Costa AL, Bliebernicht M, Nunes T, et al. Collagen type III as a possible blood biomarker of fibrosis in equine endometrium. Animals (Basel) [Internet]. 2022;12(14):1854. Available from: http://dx.doi.org/10.3390/ani12141854

Casuso RA, Al-Fazazi S, Hidalgo-Gutierrez A, López LC, Plaza-Díaz J, Rueda-Robles A, et al. Hydroxytyrosol influences exercise-induced mitochondrial respiratory complex assembly into supercomplexes in rats. Free Radic Biol Med [Internet]. 2019;134:304–10. Available from: http://dx.doi.org/10.1016/‌j.freeradbiomed.2019.01.027

Casuso RA, Al Fazazi S, Plaza-Díaz J, Ruiz-Ojeda FJ, Rueda-Robles A, Aragón-Vela J, et al. Physiological doses of hydroxytyrosol modulate gene expression in skeletal muscle of exercised rats. Life (Basel) [Internet]. 2021;11(12):1393. Available from: http://dx.doi.org/10.3390/life11121393

Al Fazazi S, Casuso RA, Aragón-Vela J, Casals C, Huertas JR. Effects of hydroxytyrosol dose on the redox status of exercised rats: the role of hydroxytyrosol in exercise performance. J Int Soc Sports Nutr [Internet]. 2018;15(1). Available from: http://dx.doi.org/10.1186/s12970-018-0221-3

Gutierrez VR, de la Puerta R, Catalá A. Mol Cell Biochem [Internet]. 2001;217(1/2):35–41. Available from: http://dx.doi.org/10.1023/a:1007219931090

Published on: 25-10-2024

Also Available On

Note: Third-party indexing sometime takes time. Please wait one week or two for indexing. Validate this article's Schema Markup on Schema.org

How to Cite

Ventura, M. B., Barberon, J. L., Cerdan, J., Leaden, P., Zeinsteger, P., & Palacios, A. (2024). Effect of hydroxytyrosol on the peroxidation of equine erythrocyte membranes by chemiluminescence. Jabirian Journal of Biointerface Research in Pharmaceutics and Applied Chemistry, 1(4), 22–25. https://doi.org/10.55559/jjbrpac.v1i4.308

Issue

Section

Research Article
2584-2536