Anticorrosion activities of Cysteine on Iron, Aluminium and Copper using Density Functional theory (DFT)

Downloads

Download the Article:

Authors

  • Abdullahi Muhammad Ayuba Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Bayero University, PMB 3011, Kano, Nigeria
  • Fater Iorhuna Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Bayero University, PMB 3011, Kano, Nigeria https://orcid.org/0000-0002-1018-198X
  • Thomas Aondofa Nyijim Department of Chemistry, Joseph Sawuan Tarka University, Makurdi, Benue, Nigeria https://orcid.org/0000-0001-9537-1987
  • Mu’azu Ibrahim Departmet of Chemistry Federal University of Technology Owerri, Imo State Nigeria https://orcid.org/0000-0002-9560-6106
  • Hussein Muhammadjamiu Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Bayero University, PMB 3011, Kano, Nigeria
  • Solomon Msughter Terna Pure and applied Chemistry University of Maiduguri Borno State Nigeria
  • Teslim Olabanji Bello Federal University of Lokoja, Kogi State Nigeria
https://doi.org/10.55559/jjbrpac.v1i4.333

Keywords:

Cysteine, DFT, Simulation , Corrosion, Inhibition , Environment, Computational, Theoretical

Abstract

This research employs Density Functional Theory (DFT) to explore the corrosion inhibition properties of the molecule Cysteine (Cy) on Fe(110), Al(110), and Cu(110) surfaces. Through an analysis of the interactions between Cysteine (Cy) and each metal surface, pivotal binding sites and corresponding binding energies were identified. Our investigation highlights the significance of the Fukui Nucleophilic site O5 and Electrophilic site S6 in the inhibition process. The negative binding energy observed reflects system stability, indicative of energy release and a transition to a lower-energy state, commonly seen in atomic and molecular systems. Notably, variations in binding energies across different metal surfaces were observed, with Fe(110) exhibiting the highest binding energy (-52.75), followed by Al(110) (-30.58), and Cu(110) (-26.24). These findings deepen our understanding of corrosion inhibition mechanisms, offering valuable insights for the development of efficient corrosion inhibitors like Cysteine.

References

Boyuan Ran, Yujie Qiang, Xinyang Liu, Lei Guo, Alessandra Gilda Ritacca, Ida Ritacco, Xianghong Li Excellent performance of amoxicillin and potassium iodide as hybrid corrosion inhibitor for mild steel in HCl environment: Adsorption characteristics and mechanism insight Journal of Materials Research and Technology, Volume 29, March–April 2024, Pages 5402-5411. https://doi.org/10.1016/j.jmrt.2024.02.233

Palomar-Pardavé M, Romero-Romo M, Herrera-Hernández H, Abreu-Quijano MA, Likhanova NV, Uruchurtu J, Juárez-García JM (2012) Influence of the alkyl chain length of 2 amino 5 alkyl 1,3,4 thiadiazole compounds on the corrosion inhibition of steel immersed in sulfuric acid solutions. Corros Sci 54(1):231–243. https://doi.org/10.1016/j.corsci.2011.09.020

Zarrouk A, Hammouti B, Lakhlifi T, Traisnel M, Vezin H, Bentiss F (2015) New 1H-pyrrole-2,5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: electrochemical, XPS and DFT studies. Corros Sci 90:572–584. https://doi.org/10.1016/j.corsci.2014.10.052

Boulhaoua M, El Hafi M, Zehra S, Eddaif L, Alrashdi AA, Lahmidi S, Guo L, Mague JT, Lgaz H (2021) Colloids and Surfaces A: Physicochemical and Engineering Aspects Synthesis, structural analysis and corrosion inhibition application of a new indazole derivative on mild steel surface in acidic media complemented with DFT and MD studies. Colloids Surf A Physicochem Eng Asp 617:126373. https://doi.org/10.1016/j.colsurfa.2021.126373

Lgaz H, Masroor S, Chafiq M, Damej M, Brahmia A, Salghi R, Benmessaoud M, Ali IH, Alghamdi MM, Chaouiki A, Chung IM (2020) Evaluation of 2-mercaptobenzimidazole derivatives as corrosion inhibitors for mild steel in hydrochloric acid. Metals 10(3):1–14. https://doi.org/10.3390/met10030357

Rbaa M, Galai M, Abousalem AS, Lakhrissi B, Touhami ME, Warad I, Zarrouk A (2020) Synthetic, spectroscopic characterization, empirical and theoretical investigations on the corrosion inhibition characteristics of mild steel in molar hydrochloric acid by three novel 8-hydroxyquinoline derivatives. Ionics 26(1):503–522. https://doi.org/10.1007/s11581-019-03160-9

J.D. Finkelstein, S.H. Mudd Trans-sulfuration in mammals. The methionine-sparing effect of cysteine The Journal of Biological Chemistry, 242 (5) (1967), pp. 873-880

H. Eagle, C. Washington, S.M. Friedman the synthesis of homocystine, cystathionine, and cystine by cultured diploid and heteroploid human cells Proceedings of the National Academy of Sciences of the United States of America, 56 (1) (1966), pp. 156-163, https://doi.org/10.1073/pnas.56.1.156

Eddy, N.O., Ebenso, E.E. Quantum chemical studies on the inhibition potentials of some Penicillin compounds for the corrosion of mild steel in 0.1 M HCl. J Mol Model 16, 1291–1306 (2010). https://doi.org/10.1007/s00894-009-0635-6

Abdulfatai A. Siaka, N. O. Eddy, S. O. Idris, L. Magaji, Z. N. Garba, I. S. Shabanda Quantum Chemical Studies of Corrosion Inhibition and Adsorption Potentials of Amoxicillin on Mild Steel in HCl Solution International Journal of Modern Chemistry, 2013, 4(1): 1-10

Erma CB, Quraishi MA, Ebenso EE, Obot IB, El Assyry A. 3-amino alkylated indoles ascorrosion inhibitors for mild steel in 1M HCl: Experimental and theoretical studies. Jour-nal of Molecular Liquids. 2016;219:647-660

(PDF) Density Functional Theory (DFT) as a Powerful Tool for Designing Corrosion Inhibitors in Aqueous Phase. Available from: https://www.researchgate.net/publication/328509465_Density_Functional_Theory_DFT_as_a_Powerful_Tool_for_Designing_Corrosion_Inhibitors_in_Aqueous_Phase [accessed Apr 11 2024].

Ayuba Abdullahi Muhammad, Nyijime Aondofa Thomas, Najib Usman Shehu, Fater Iorhuna*. Exploring the Inhibition Potential of Carbamodithionic acid on Fe (111) Surface: A Theoretical Study. J. Eng. Ind. Res. 2024, 4(4): 201-210. https://doi.org/10.48309/jeires.2023.4.2

Singh AK. Inhibition of mild steel corrosion in hydrochloric acid solution by 3-(4-((Z)-indolin-3-ylideneamino) phenylimino) indolin-2-one. Industrial and Engineering Chemis-try Research. 2012; 51:3215-3223

Lukovits I, Klaman E, Zucchi F. Corrosion Inhibitors—Correlation between ElectronicStructure and Efficiency. Corrosion. 2001; 3:57

ME. Belghiti, S. Echihi, A. Dafali, Y. Karzazi, M. Bakasse, H. Elalaoui-Elabdallaoui, LO. Olasunkanmi, EE. Ebenso, and M. Tabyaoui, “Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some hydrazine derivatives in phosphoric acid on mild steel surface”, Applied Surface Science, vol. 491, pp. 707-22, 2019. http://doi.org/10.1016/j.apsus.2019.04.125.

T. A. Nyijime , H.F. Chahul, A. M. Ayuba, F. Iorhuna. Theoretical Investigations on Thiadiazole Derivatives as Corrosion Inhibitors on Mild Steel. Adv. J. Chem. A, 2023, 6(2), 141-154. https://doi.org/10.22034/AJCA.2023.383496.1352

Basma A. Hadi, Hiba H. Ibraheem. Experimental and Theoretical Studies on Corrosion Inhibition Performance of Pyridine Derivatives for Mild Steel in Acid Solution. Chem. Methodol., 2023, 7(2) 168-182 https://doi.org/10.22034/CHEMM.2023.367116.1622

LT. Popoola, TA. Aderibigbe, and MA. Lala, “Mild steel corrosion inhibition in hydrochloric acid using cocoa pod husk-ficus exasperata: extract preparation optimization and characterization” Iranian Journal of Chemistry and Chemical Engineering (IJCCE), vol. 41, no. 2, pp. 482-92, 2022. https://doi.org/10.30492/ijcce.2021.114540.3752

R. M. Kubba and N. M. Al-Joborry, “Theoretical study of a new oxazolidine -5- one derivative as a corrosion inhibitor for carbon steel surface”, Iraqi Journal of Science, vol. 62, no. 5, pp. 1396–1403, 2021. https://doi.org/10.24996/ijs.2021.62.5.1

K. A. K. Al-Rudaini and K. A. S. Al-Saadie, “Milk Thistle Leaves Aqueous Extract as a New Corrosion Inhibitor for Aluminum Alloys in Alkaline Medium”, Iraqi Journal of Science, vol. 62, no. 2, pp. 363–372, 2021. https://doi.org/10.24996/ijs.2021.62.2.2

M. A. Mohammed and R. M. Kubba, “Experimental Evaluation for the Inhibition of Carbon Steel Corrosion in Salt and Acid Media by New Derivative of Quinolin-2-One”, Iraqi Journal of Science, vol. 61, no. 8, pp. 1861–1873, 2020. https://doi.org/10.24996/ijs.2020.61.8.2

S. Mammeri, N. Chafai, H. Harkat, R. Kerkour, and S. Chafaa, “Protection of steel against corrosion in acid medium using dihydropyrimidinone derivatives: experimental and DFT study”, Iranian Journal of Science and Technology, Transactions A: Science, vol. 45, no. 5, 1607-19, 2021. https://doi.org/10.1007/s40995-021-01140-1.

F. Iorhuna, M. Abdullahi Ayuba, A. Thomas Nyijime, M. Sani, H. Abdulmumini, J. Oluwafemi Oyeyode, A Comparative Computational Stimulation Studies on Corrosion Inhibition and Adsorptive Qualities of Coumarin Derivative on Iron, Zinc, Copper and Aluminium. Eurasian J. Sci. Tech., 2024, 4(1), 44-56. https://doi.org/10.48309/ejst.2024.418005.1094

TV. Kumar, J. Makangara, C. Laxmikanth, and NS. Babu, “Computational studies for inhibitory action of 2-mercapto-1-methylimidazole tautomers on steel using of density functional theory method (DFT)”, International Journal of Computational and Theoretical Chemistry, vol. 4, no. 1, pp. 1-6, 2016. http://doi: 10.11648/j.ijctc.20160401.11

TO. Esan, OE. Oyeneyin, A. Deola, and NI. Olanipekun, “Corrosion inhibitive potentials of some amino acid derivatives of 1, 4-naphthoquinone− DFT calculations”, Advanced Journal of Chemistry-Section A, vol. 5, no. 4, pp. 263-270, 2022. https://doi.org/10.22034/ajca.2022.353882.1321

R. M. Kubba, N. M. Al-Joborry, and N. J. Al-lami, “Theoretical and Experimental Studies for Inhibition Potentials of Imidazolidine 4-One and Oxazolidine 5-One Derivatives for the Corrosion of Carbon Steel in Sea Water”, Iraqi Journal of Science, vol. 61, no. 11, pp. 2776–2796, 2020. https://doi.org/10.24996/ijs.2020.61.11.3

Z. Yavari, M. Darijani, and M. Dehdab, “Comparative theoretical and experimental studies on corrosion inhibition of aluminum in acidic media by the antibiotics drugs”, Iranian Journal of Science and Technology, Transactions A: Science, vol. 42, no. 4, pp. 1957-67, 2018. https://doi.org/10.1007/s40995-017-0358-y.

N. M. Al-Joborry and R. M. Kubba, “Theoretical and Experimental Study for Corrosion Inhibition of Carbon Steel in Salty and Acidic Media by A New Derivative of Imidazolidine 4-One”, Iraqi Journal of Science, vol. 61, no. 8, pp. 1842–1860, 2020. https://doi.org/10.24996/ijs.2020.61.8.1

S. John, J. Joy, M. Prajila, and A. Joseph, “Electrochemical, quantum chemical, and molecular dynamics studies on the interaction of 4‐amino‐4H, 3, 5‐di (methoxy)‐1, 2, 4‐triazole (ATD), BATD, and DBATD on copper metal in 1NH2SO4”, Materials and Corrosion, vol. 62, no. 11, pp. 1031-41, 2011. https://doi.org/10.1002/maco.201005938

ME. Belghiti, S. Echihi, A. Dafali, Y. Karzazi, M. Bakasse, H. Elalaoui-Elabdallaoui, LO. Olasunkanmi, EE. Ebenso, and M. Tabyaoui, “Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some hydrazine derivatives in phosphoric acid on mild steel surface”, Applied Surface Science, vol. 491, pp. 707-22, 2019. http://doi.org/10.1016/j.apsus.2019.04.125.

M. M. Kadhim, L. A. A. Juber, and A. S. M. Al-Janabi, “Estimation of the Efficiency of Corrosion Inhibition by Zn-Dithiocarbamate Complexes: a Theoretical Study”, Iraqi Journal of Science, vol. 62, no. 9, pp. 3323–3335, 2021. https://doi.org/10.24996/ijs.2021.62.9(SI).3

D. Glossman-Mitnik, “Computational study of the chemical reactivity properties of the rhodamine B molecule, international conference on computational science, ICCS”, Procedia Computer Science, vol. 18 pp. 816 – 825, 2013. https://doi.org/10.1016/j.procs.2013.05.246

Nahlé, R. Salim, F. El Hajjaji, MR. Aouad, M. Messali, E. Ech-Chihbi, B. Hammouti, and M. Taleb, “Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: experimental & theoretical approach”, RSC advances, vol. 11, no. 7, pp. 4147-62, 2021. https://doi.org/10.1039/D0RA09679B

L. H Madkour., I.H. Elshamy Experimental and computational studies on the inhibition performances of benzimidazole and its derivatives for the corrosion of copper in nitric acid, Int. J. Ind. Chem. (2016) 7, 195–22, https://doi.org/10.1007/s40090-015-0070-8

A.M. Ayuba, T.A. Nyijime, S.A. Minjibir, F. Iorhuna, Adsorption Monitoring of Triflouroaceticacid, Pentadecyl Ester and Pentadecanoic Acid, 14-Methyl-, Methyl Ester on Fe (110): using DFT and Molecular Simulation. Eurasian J. Sci. Tech., 2024, 4(2), 105-115. https://doi.org/10.48309/EJST.2023.423518.1108

Kılınççeker G., Baş M., Zarifi F., and Sayın K., 2021 “Experimental and computational investigation for (E)-2-hydroxy-5-(2-benzylidene) aminobenzoic acid schiff base as a corrosion inhibitor for copper in acidic media”, Iranian Journal of Science and Technology, Transactions A: Science, 45, 2: 515-27, https://doi.org/10.1007/s40995-020-01015-x

Chen J, Hu X, Cui J 2018. "Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells". Oncology Letters. 15 (5): 7423 7432. https://doi.org/10.3892%2Fol.2018.8251

Al Mashhadani H. A., and Saleh K. A., 2020 “Electrochemical Deposition of Hydroxyapatite Co-Substituted By Sr/Mg Coating on Ti-6Al-4V ELI Dental Alloy Post-MAO as Anti-Corrosion”, Iraqi Journal of Science, 61,11:2751–2761,. https://doi.org/10.24996/ijs.2020.61.11.1.

Afandiyeva L., Abbasov V., Aliyeva L., Ahmadbayova S., Azizbeyli E., and El-Lateef Ahmed H.M., 2018“Investigation of organic complexes of imidazolines based on synthetic oxy-and petroleum acids as corrosion inhibitors”, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37,3:73-9, 2018. http:// https://doi.org/10.30492/ijcce.2018.34146.

Jafari H, Mohsenifar M, and Sayin K, 2018 “Effect of alkyl chain length on adsorption behavior and corrosion inhibition of imidazoline inhibitors”, Iranian Journal of Chemistry and Chemical Engineering (IJCCE). 37, 5:85-103. https://doi.org/10.30492/ijcce.2018.29779.

Elmi S,. Foroughi MM, Dehdab M., and Shahidi-Zandi M., 2019“Computational evaluation of corrosion inhibition of four quinoline derivatives on carbon steel in aqueous phase”, Iranian Journal of Chemistry and Chemical Engineering (IJCCE).38,1:185-200, https://doi.org/10.30492/ijcce.2019.29776.

Popoola LT., Aderibigbe TA., and Lala MA., 2022 “Mild steel corrosion inhibition in hydrochloric acid using cocoa pod husk-ficus exasperata: extract preparation optimization and characterization” Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41, 2: 482-92, https://doi.org/10.30492/ijcce.2021.114540.3752.

Kubba R. M., and. Al-Joborry N. M, 2021 “Theoretical study of a new oxazolidine -5- one derivative as a corrosion inhibitor for carbon steel surface”, Iraqi Journal of Science, 62, 5, 1396–1403. https://doi.org/10.24996/ijs.2021.62.5.1

Adegoke, A. B., Abeedha T. K., Adepoju, R.A. AdepojuMolecular 2020. Dynamic (MD) Simulation and Modeling the Bio-Molecular Structure of Human UDP Glucose -6-Dehydrogenase Isoform 1 (hUGDH) Related to Prostate Cancer. BASRA J. Sci., 38 (3), 448–466. https://doi.org/10.29072/basjs.202036

Nyijime T. A., Kutshak P. I., Chahul H. F., Ayuba A. M., Iorhuna F., Hudu V O. A., 2024 Theoretical investigation oF Aluminum Corrosion Inhibition using Chalcone Derivatives Mediterranean Journal of Chemistry, Vol 14, No 1, https://dx.doi.org/10.13171/mjc02402281774nyijime

Kiran C., Blagg B. S. J., and Ashfeld L. B. 2022 Syntheses of Symmetrical and Unsymmetrical Lysobisphosphatidic Acid Derivatives. The Journal of Organic Chemistry 87, 10523-10530. https://doi.org/10.1021/acs.joc.2c01176

Guo L., Zhu M., Chang J., Thomas R., Zhang R., Wang P., Zheng X., Lin Y., and Marzouki R., 2021 “Corrosion inhibition of N80 steel by newly synthesized imidazoline based ionic liquid in 15% HCl medium: experimental and theoretical investigations”, Int. J. Electrochem. Sci., 16, 211139-2, https://doi:10.20964/2021.11.15

Lgaz H., Masroor S., Chafiq M., Damej M., Brahmia A., Salghi R., Benmessaoud M., Ali I.H., Alghamdi M.M., Chaouiki A., and Chung I.M., 2020 “Evaluation of 2-mercaptobenzimidazole derivatives as corrosion inhibitors for mild steel in hydrochloric acid”, Metals, 10, 3: 357, https://doi:10.3390/met10030357

Glossman-Mitnik D., “Computational study of the chemical reactivity properties of the rhodamine B molecule, international conference on computational science, ICCS”, Procedia Computer Science, 18: 816 – 825, https://doi.org/10.1016/j.procs.2013.05.246

Nyijime T.A, Chahul H. F., Ayuba A. M., Iorhuna F. Theoretical Investigations on Thiadiazole Derivatives as Corrosion Inhibitors on Mild Steel. Adv. J. Chem. A, 2023, 6(2), 141-154, https://doi.org/10.22034/AJCA.2023.383496.1352

Published on: 24-10-2024

Also Available On

Note: Third-party indexing sometime takes time. Please wait one week or two for indexing. Validate this article's Schema Markup on Schema.org

How to Cite

Ayuba, A. M., Iorhuna, F., Nyijim, T. A., Ibrahim, M., Muhammadjamiu, H., Terna, S. M., & Bello, T. O. (2024). Anticorrosion activities of Cysteine on Iron, Aluminium and Copper using Density Functional theory (DFT). Jabirian Journal of Biointerface Research in Pharmaceutics and Applied Chemistry, 1(4), 13–21. https://doi.org/10.55559/jjbrpac.v1i4.333

Issue

Section

Research Article
2584-2536