

# **Sprin Journal of Arts, Humanities and Social Sciences**

ISSN: 2583-2387 (Online) Vol. 4(9), Oct 2025, pp, 51-56







# Creating and Validating an Audio-Visual Scale for Assessing Teachers' Classroom Management Competency

Ritu Samaddar<sup>1</sup>, Deb Prasad Sikdar<sup>2</sup>\*

<sup>1</sup>Research Scholar, Department of Education, University of Kalyani, Nadia, West Bengal, India <sup>2</sup>Professor, Department of Education, University of Kalyani, Nadia, West Bengal, India



#### ARTICLE INFO

#### ABSTRACT

#### *Keywords:*

Audio-visual learning, Classroom Management, Cronbach Alpha, Item Analysis

#### *Article History:*

Received: 13-10-2024 Accepted: 06-11-2025 Published: 27-11-2025 Audiovisual learning is crucial in the education system, enhancing the teaching and learning process. They serve as effective tools for disseminating knowledge and offer a dynamic information system. The study aims to develop and evaluate an audio-visual learning scale based on teachers' classroom management strategies and also assess the current state of audio-visual learning availability and usage in the teaching learning process. In this study, a questionnaire was designed to develop the audio-visual scale on teachers' classroom management approaches, with 28 items applied to 100 teachers and the remaining 25 items applied to 360 teachers in West Bengal, India. The study was analysed using mean, standard deviation, t-test for item analysis, and Cronbach's alpha for measuring item reliability on various items and data. The final scale is made from each statement, and the conclusion is that 23 items are perfect for measuring the audio-visual learning scale related to classroom management, which plays a crucial role in teaching.

#### Cite this article:

Samaddar, R., & Sikdar, D. P. (2025). Creating and Validating an Audio-Visual Scale for Assessing Teachers' Classroom Management Competency. Sprin Journal of Arts, Humanities and Social Sciences, 4(9), 51–56. https://doi.org/10.55559/sjahss.v4i9.412

### 1. Introduction

Education is crucial for a good life, and effective teaching and learning are essential elements. One of the most groundbreaking inventions of the 21st century, the use of technology jars is now widely used in the classroom in a variety of ways, one of which is the audio-visual method. Teachers use various methods and materials to engage students and explain concepts. Teaching, instructional, and audio-visual aids all support learning and stimulate students' interest in learning. Classrooms use instructional tools like maps, charts, models, film segments, projection equipment, the radios, and televisions to make learning more effective and enjoyable (Rather, 2004). Audio visuals enhance education by improving student learning and sharing information. Their rapid access and comprehension of concepts have significantly increased over time, leading to increased productivity and understanding (Farooq, 2014). Audiovisuals, or teaching materials, are learning devices used in classrooms to enhance learning experiences. They follow Farouk's A.V. model, which aims to make knowledge clear through the senses. Teachers use these materials to present information in an appealing manner, facilitating the auditory and visual experience of students (Anzaku, 2011). In this method, teachers can easily present various topics to a large number of students, so this teaching learning method is very effective.

The audiovisual method is a valuable tool for incorporating visual and audio materials in lessons for elementary school students. Online lessons are a vital resource for supplying audio-

visual materials since more students may engage in classes due to the improved accessibility of electronic and multi-media technology. Online education has become a priority for everyone, according to Babayev Javid, who emphasizes its significance (Javid, 2022). The study proposes a new perspective on audiovisual scene understanding, focusing on the cognition foundation of audio-visual modalities. This approach helps organize studies in a logical paradigm, ensuring intrinsic consistency across modalities, and looks back at the development of the discipline of audio-visual learning in modelling human perception. This approach is based on existing surveys and new research findings (Zhu et al. 2021; Vilaca et al. 2022). Audio-visual is a method that is used in the field of education in all three aspects—teaching, learning, and aid—which makes education better, where students can learn at home from any teacher in the world through various aids. Teachers can teach in different parts of the world at the same

The five senses that make up human perception are taste, smell, touch, hearing, and vision. As artificial intelligence technology has advanced, multimodality learning has become increasingly important for improving machine perception (Shannon, 1995; Krishna, 2019). Both academia and industry have extensively developed analyses of auditory and visual information, two significant perceptual modalities in daily life (He et al., 2011; Tong et al., 2019). Facial recognition, fine-grained visual classification, and speech recognition are notable

#### \*Corresponding Author:

☑ dps\_kalyaniuniversity@yahoo.com (D. P. Sikdar)

https://doi.org/10.55559/sjahss.v4i9.412

© 2025 The Authors. Published by Sprin Publisher, India. This is an open access article published under the CC-BY license

accomplishments. To get around restrictions on perception tasks, audio-visual learning (AVL) utilizing both modalities has been introduced (Fu et al., 2019). Examining the connection between auditory and visual data generates more intriguing research questions and improves our understanding of machine learning (Li et al., 2019; Ding et al., 2021; Chang et al., 2020). Audio visuals play a crucial role in education, enhancing student learning and have seen a significant increase in usage over the years. The speed at which students can access and share these visual aids has significantly improved (Hasanova, 2023). Visual mediums should be suitable for developing real ideas about various life areas. Teachers can teach students concepts like electron movement in atoms using diagrams, tables, and real films. The aim of this study is Establishing and analysing a consistent structure to appraise teachers' application of audio-visual learning in classroom management.

#### 2. Objectives of the Study

Audio visual is a great method that is used in education for various purposes. The main purpose of this study is –

- To assess the items on the Audio-visual Learning Scale using t- test.
- 2. To assess the reliability of the Audio-Visual Learning Scale in order to validate it.

#### 3. Methodology

## 3.1 Design

The study utilized a descriptive survey research design to examine the impact of audio-visual materials on knowledge dissemination for facilitators in selected literacy centres. In this study researchers were used simple random technique to collect the data. "Simple random sampling is a widely used method in scientific research, used for highly homogenous populations where members are randomly selected to participate" (Bhardwaj, 2019). This technique assures that each person has an equal probability of being included in the sample from the population, according to Acharya (2013). According to Best and Kahn (2016), basic random sampling is a tedious and seldom utilized method in research design.

## 3.2 Participants

After giving draft scale to one hundred (100) West Bengal teachers for item analysis, the researcher evaluated the internal consistency of the scale on three hundred six (306) teachers using the Cronbach's alpha method. Prior to submitting their responses, the participants were required to read the questionnaire. The points were then computed based on the appropriate scale that was allocated to every statement.

#### 3.3 Item Pool

The study involved a conceptual framework, literature review, drafting of items and questions, and consultation with experts. An instrument developed by Rasul et al., in 2011 did not show sufficient statistical reliability due to the characteristics of the participants and was therefore not adopted. In order to improve classroom management, the researcher decided to develop a new scale for audio-visual learning (Martin et al., 1998; Savran & Çakıroglu, 2004; Yerin-Güneri et al., 2004).

# 3.4 Sub-scale

Audio-Visual learning (AVL) scale related to classroom management was defined as a multi-faceted construct that

includes six broad dimensions: Time Management (5 items) Content Preparation (5 items), Student Perception (5 items), Class Control (4 items), Child Psychology (4 items), teacher Preparation (5 items) mentions at previous paper of Samaddar et al., 2023 (Samaddar et al., 2023).

#### 3.5 Scoring of Tools

The study employs a 5-point Likert scale with 28 questions to measure students' Audio-Visual Learning in Classroom Management. According to Mukherjee et al., (2018), "The scale ranges from 1 (strongly disagree) to 5 (strongly agree)", with a maximum score of 140 (ranking 5 on each item). "The scale was developed using both positive and negative statements, with each item scoring as 'Strongly Agree' ('5'), 'Agree' ('4'), 'Neutral' ('3'), 'Disagree' ('2'), and 'Strongly Disagree' ('1'). Unfavourable statements were scored as 'Strongly Disagree' ('5'), 'Disagree' ('4'), 'Neutral' ('3'), 'Agree' ('2'), and 'Strongly Agree' ('1')".

#### 3.6 Statistics

The study utilized item analysis to standardize the Audio-Visual learning-associated Classroom Management Scale, identifying poor items and comparing them with good items. Classical statistics like difficulty, discrimination, and reliability were used, and Cronbach's alpha was applied for reliability evaluation (Bichi, 2015). Item analysis is a statistical method used to assess the quality of individual items, item sets, and entire sets of items, as well as their relationship to other items, by examining their performance against external criteria or remaining test items (Thompson & Levitov, 1985). The information is utilized to enhance the quality of items and tests, with the concepts of item analysis being similar for both norm-referenced and criterion-referenced tests.

#### 4. Result

A growth-optimal strategy aims to maximize wealth growth while mitigating bankruptcy risk, involving rapid wealth building, substantial risk-taking, and volatility, with favourable investment prospects and constrained potential losses. Contemporary research on growth-optimal strategies originated from Kelly's 1956 publication, which introduced a method for maximizing long-term wealth growth rate in multi-period investment contexts, focusing on compound returns (Kelly, 1956). The study involves analysing test scores and ranking them, with 27% of top and bottom students separated for analysis (Wiersma & Jurs, 1990; p.145; Hetzel, 1997). This value gives enough cases to investigate in order to maximize the differences between normal distributions. To promote stability and make discriminations clearer, it is important to have as many students in each group as possible, while also ensuring as many differences as possible (Popham, 1981). Compared to the diversity index, discrimination coefficients are more accurate because they are calculated for each test taker, using only the 27% upper + 27% lower) 54% of the total.

It has various types, including one sample t-test, two samples independent t-test, and paired t-test (Katherine et al., 2018). The one sample t-test compares a sample's mean to a probable population value. Data values must be independent, continuous, and derived from a basic random sample of the population in order for a test to be considered valid (Mishra et al., 2019). Depending on whether the study idea is directed or not, there are several possible formats for the statistical prediction for one-sample t-tests.

#### 4.1 Item Analysis

Table 1: Discriminant coefficients for Subscales

| N   Mean   SD   N   Mean   SD   t   df   p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Table 1: Discriminant coemcients for Subscales |                 |      |      |                 |      |      |            |    |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------|------|------|-----------------|------|------|------------|----|---------|
| N   Mean   SD   N   Mean   SD   t   df   p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Item                                           | Upper Quadrille |      |      | Lower Quadrille |      |      | Comparison |    |         |
| AVI.2         27         5.00         0.13         27         4.00         0.27         3.67         52         0.000***           AVI.3         27         4.29         0.17         27         2.62         0.26         3.28         52         0.000***           AVI.4         27         4.77         0.12         27         4.62         0.15         0.75         52         0.226           AVI.5         27         4.88         0.06         27         3.59         0.26         4.80         52         0.000***           AVI.6         27         5.00         0.15         27         4.11         0.25         3.52         52         0.000***           AVI.7         27         4.25         0.18         27         2.37         0.23         3.18         52         0.000***           AVI.8         27         4.88         0.08         27         4.40         0.18         2.36         52         0.010**           AVI.10         27         4.81         0.20         27         4.55         0.20         1.52         52         0.066*           AVI.11         27         4.96         0.03         27         4.62                                                   |                                                | N               | Mean | SD   | N               | Mean | SD   | t          | df | р       |
| AVI.3         27         4.29         0.17         27         2.62         0.26         3.28         52         0.000***           AVI.4         27         4.77         0.12         27         4.62         0.15         0.75         52         0.226           AVI.5         27         4.88         0.06         27         3.59         0.26         4.80         52         0.000***           AVI.6         27         5.00         0.15         27         4.11         0.25         3.52         52         0.000***           AVI.7         27         4.25         0.18         27         2.37         0.23         3.18         52         0.000***           AVI.8         27         4.88         0.08         27         4.40         0.18         2.36         52         0.010**           AVI.9         27         4.81         0.02         27         2.44         0.27         3.90         52         0.000***           AVI.10         27         4.81         0.20         27         2.46         0.17         1.99         52         0.036**           AVI.11         27         4.96         0.03         27         4.62                                                  | AVL1                                           | 27              | 4.29 | 0.19 | 27              | 2.66 | 0.26 | 3.03       | 52 | 0.000** |
| AVIA         27         4.77         0.12         27         4.62         0.15         0.75         52         0.226           AVI5         27         4.88         0.06         27         3.59         0.26         4.80         52         0.000***           AVI6         27         5.00         0.15         27         4.11         0.25         3.52         52         0.000***           AVI7         27         4.25         0.18         27         2.37         0.23         3.18         52         0.000***           AVI8         27         4.88         0.08         27         4.40         0.18         2.36         52         0.010**           AVI9         27         4.88         0.06         27         4.55         0.20         1.52         52         0.066           AVI10         27         4.81         0.20         27         2.44         0.27         3.90         52         0.000***           AVI11         27         4.96         0.03         27         4.62         0.17         1.99         52         0.036*           AVI12         27         5.00         0.11         27         4.62         0.20<                                                | AVL2                                           | 27              | 5.00 | 0.13 | 27              | 4.00 | 0.27 | 3.67       | 52 | 0.000** |
| AVL5       27       4.88       0.06       27       3.59       0.26       4.80       52       0.000***         AVL6       27       5.00       0.15       27       4.11       0.25       3.52       52       0.000***         AVL7       27       4.25       0.18       27       2.37       0.23       3.18       52       0.000***         AVL8       27       4.88       0.08       27       4.40       0.18       2.36       52       0.010**         AVL9       27       4.88       0.06       27       4.55       0.20       1.52       52       0.066         AVL10       27       4.81       0.20       27       2.44       0.27       3.90       52       0.006**         AVL11       27       4.96       0.03       27       4.62       0.17       1.99       52       0.036*         AVL13       27       4.66       0.20       27       3.44       0.26       3.60       52       0.040**         AVL13       27       4.66       0.20       27       4.44       0.22       1.98       52       0.040**         AVL14       27       4.85       0.09 <th>AVL3</th> <th>27</th> <th>4.29</th> <th>0.17</th> <th>27</th> <th>2.62</th> <th>0.26</th> <th>3.28</th> <th>52</th> <th>0.000**</th>   | AVL3                                           | 27              | 4.29 | 0.17 | 27              | 2.62 | 0.26 | 3.28       | 52 | 0.000** |
| AVL6         27         5.00         0.15         27         4.11         0.25         3.52         52         0.000***           AVL7         27         4.25         0.18         27         2.37         0.23         3.18         52         0.000***           AVL8         27         4.88         0.08         27         4.40         0.18         2.36         52         0.010**           AVL9         27         4.88         0.06         27         4.55         0.20         1.52         52         0.066           AVL10         27         4.81         0.20         27         2.44         0.27         3.90         52         0.000***           AVL11         27         4.96         0.03         27         4.62         0.17         1.99         52         0.036*           AVL12         27         5.00         0.11         27         4.62         0.20         1.98         52         0.040**           AVL14         27         4.85         0.09         27         4.44         0.22         1.98         52         0.047*           AVL15         27         5.00         0.00         27         4.66         0.1                                                | AVL4                                           | 27              | 4.77 | 0.12 | 27              | 4.62 | 0.15 | 0.75       | 52 | 0.226   |
| AVL7         27         4.25         0.18         27         2.37         0.23         3.18         52         0.000***           AVL8         27         4.88         0.08         27         4.40         0.18         2.36         52         0.010**           AVL9         27         4.88         0.06         27         4.55         0.20         1.52         52         0.066           AVL10         27         4.81         0.20         27         2.44         0.27         3.90         52         0.000***           AVL11         27         4.96         0.03         27         4.62         0.17         1.99         52         0.036**           AVL12         27         5.00         0.11         27         4.62         0.20         1.98         52         0.040**           AVL13         27         4.66         0.20         27         3.44         0.26         3.60         52         0.040**           AVL14         27         4.85         0.09         27         4.44         0.22         1.98         52         0.047*           AVL15         27         5.00         0.00         27         4.66         0.                                                | AVL5                                           | 27              | 4.88 | 0.06 | 27              | 3.59 | 0.26 | 4.80       | 52 | 0.000** |
| AVL8       27       4.88       0.08       27       4.40       0.18       2.36       52       0.010*         AVL9       27       4.88       0.06       27       4.55       0.20       1.52       52       0.066         AVL10       27       4.81       0.20       27       2.44       0.27       3.90       52       0.000***         AVL11       27       4.96       0.03       27       4.62       0.17       1.99       52       0.036*         AVL12       27       5.00       0.11       27       4.62       0.20       1.98       52       0.040*         AVL13       27       4.66       0.20       27       3.44       0.26       3.60       52       0.040**         AVL14       27       4.85       0.09       27       4.44       0.22       1.98       52       0.047*         AVL15       27       5.00       0.00       27       4.66       0.18       1.97       52       0.026*         AVL16       27       4.40       0.21       27       3.00       0.30       3.79       52       0.000**         AVL17       27       5.00       0.11                                                                                                                                               | AVL6                                           | 27              | 5.00 | 0.15 | 27              | 4.11 | 0.25 | 3.52       | 52 | 0.000** |
| AVL9       27       4.88       0.06       27       4.55       0.20       1.52       52       0.066         AVL10       27       4.81       0.20       27       2.44       0.27       3.90       52       0.000***         AVL11       27       4.96       0.03       27       4.62       0.17       1.99       52       0.036*         AVL12       27       5.00       0.11       27       4.62       0.20       1.98       52       0.040*         AVL13       27       4.66       0.20       27       3.44       0.26       3.60       52       0.000**         AVL14       27       4.85       0.09       27       4.44       0.22       1.98       52       0.047*         AVL15       27       5.00       0.00       27       4.66       0.18       1.97       52       0.026*         AVL16       27       4.40       0.21       27       3.00       0.30       3.79       52       0.000**         AVL17       27       5.00       0.11       27       4.59       0.17       2.67       52       0.013**         AVL18       27       4.96       0.03                                                                                                                                             | AVL7                                           | 27              | 4.25 | 0.18 | 27              | 2.37 | 0.23 | 3.18       | 52 | 0.000** |
| AVL10         27         4.81         0.20         27         2.44         0.27         3.90         52         0.000***           AVL11         27         4.96         0.03         27         4.62         0.17         1.99         52         0.036*           AVL12         27         5.00         0.11         27         4.62         0.20         1.98         52         0.040*           AVL13         27         4.66         0.20         27         3.44         0.26         3.60         52         0.000**           AVL14         27         4.85         0.09         27         4.44         0.22         1.98         52         0.047*           AVL15         27         5.00         0.00         27         4.66         0.18         1.97         52         0.026*           AVL16         27         4.40         0.21         27         3.00         0.30         3.79         52         0.026*           AVL17         27         5.00         0.11         27         4.59         0.17         2.67         52         0.013***           AVL18         27         4.98         0.06         27         2.88         0                                                | AVL8                                           | 27              | 4.88 | 0.08 | 27              | 4.40 | 0.18 | 2.36       | 52 | 0.010*  |
| AVL11         27         4.96         0.03         27         4.62         0.17         1.99         52         0.036*           AVL12         27         5.00         0.11         27         4.62         0.20         1.98         52         0.040*           AVL13         27         4.66         0.20         27         3.44         0.26         3.60         52         0.000**           AVL14         27         4.85         0.09         27         4.44         0.22         1.98         52         0.047*           AVL15         27         5.00         0.00         27         4.66         0.18         1.97         52         0.026*           AVL16         27         4.40         0.21         27         3.00         0.30         3.79         52         0.006**           AVL17         27         5.00         0.11         27         4.59         0.17         2.67         52         0.013***           AVL18         27         4.88         0.06         27         2.88         0.27         3.12         52         0.040**           AVL20         27         4.66         0.13         27         2.70         0                                                | AVL9                                           | 27              | 4.88 | 0.06 | 27              | 4.55 | 0.20 | 1.52       | 52 | 0.066   |
| AVL12         27         5.00         0.11         27         4.62         0.20         1.98         52         0.040*           AVL13         27         4.66         0.20         27         3.44         0.26         3.60         52         0.000**           AVL14         27         4.85         0.09         27         4.44         0.22         1.98         52         0.047*           AVL15         27         5.00         0.00         27         4.66         0.18         1.97         52         0.026*           AVL16         27         4.40         0.21         27         3.00         0.30         3.79         52         0.026*           AVL17         27         5.00         0.11         27         4.59         0.17         2.67         52         0.013***           AVL18         27         4.88         0.06         27         2.88         0.27         3.12         52         0.000***           AVL19         27         4.96         0.03         27         4.59         0.20         1.98         52         0.043*           AVL20         27         4.92         0.05         27         4.55         0                                                | AVL10                                          | 27              | 4.81 | 0.20 | 27              | 2.44 | 0.27 | 3.90       | 52 | 0.000** |
| AVL13       27       4.66       0.20       27       3.44       0.26       3.60       52       0.000**         AVL14       27       4.85       0.09       27       4.44       0.22       1.98       52       0.047*         AVL15       27       5.00       0.00       27       4.66       0.18       1.97       52       0.026*         AVL16       27       4.40       0.21       27       3.00       0.30       3.79       52       0.000**         AVL17       27       5.00       0.11       27       4.59       0.17       2.67       52       0.013***         AVL18       27       4.88       0.06       27       2.88       0.27       3.12       52       0.000***         AVL19       27       4.96       0.03       27       4.59       0.20       1.98       52       0.043*         AVL20       27       4.66       0.13       27       2.70       0.27       3.41       52       0.000**         AVL21       27       4.92       0.05       27       4.55       0.21       1.96       52       0.050*         AVL23       27       3.51       0.31<                                                                                                                                        | AVL11                                          | 27              | 4.96 | 0.03 | 27              | 4.62 | 0.17 | 1.99       | 52 | 0.036*  |
| AVL14       27       4.85       0.09       27       4.44       0.22       1.98       52       0.047*         AVL15       27       5.00       0.00       27       4.66       0.18       1.97       52       0.026*         AVL16       27       4.40       0.21       27       3.00       0.30       3.79       52       0.000**         AVL17       27       5.00       0.11       27       4.59       0.17       2.67       52       0.013***         AVL18       27       4.88       0.06       27       2.88       0.27       3.12       52       0.000***         AVL19       27       4.96       0.03       27       4.59       0.20       1.98       52       0.043*         AVL20       27       4.66       0.13       27       2.70       0.27       3.41       52       0.000***         AVL21       27       4.92       0.05       27       4.55       0.21       1.96       52       0.050*         AVL23       27       3.51       0.31       27       2.37       0.26       2.78       52       0.003**         AVL24       27       4.92       0.07                                                                                                                                        | AVL12                                          | 27              | 5.00 | 0.11 | 27              | 4.62 | 0.20 | 1.98       | 52 | 0.040*  |
| AVL15       27       5.00       0.00       27       4.66       0.18       1.97       52       0.026*         AVL16       27       4.40       0.21       27       3.00       0.30       3.79       52       0.000**         AVL17       27       5.00       0.11       27       4.59       0.17       2.67       52       0.013**         AVL18       27       4.88       0.06       27       2.88       0.27       3.12       52       0.000**         AVL19       27       4.96       0.03       27       4.59       0.20       1.98       52       0.043*         AVL20       27       4.66       0.13       27       2.70       0.27       3.41       52       0.000**         AVL21       27       4.92       0.05       27       4.55       0.21       1.96       52       0.050*         AVL22       27       4.96       0.03       27       4.77       0.09       1.97       52       0.040*         AVL23       27       3.51       0.31       27       2.37       0.26       2.78       52       0.003**         AVL24       27       4.92       0.07 <th>AVL13</th> <th>27</th> <th>4.66</th> <th>0.20</th> <th>27</th> <th>3.44</th> <th>0.26</th> <th>3.60</th> <th>52</th> <th>0.000**</th> | AVL13                                          | 27              | 4.66 | 0.20 | 27              | 3.44 | 0.26 | 3.60       | 52 | 0.000** |
| AVL16       27       4.40       0.21       27       3.00       0.30       3.79       52       0.000**         AVL17       27       5.00       0.11       27       4.59       0.17       2.67       52       0.013***         AVL18       27       4.88       0.06       27       2.88       0.27       3.12       52       0.000***         AVL19       27       4.96       0.03       27       4.59       0.20       1.98       52       0.043*         AVL20       27       4.66       0.13       27       2.70       0.27       3.41       52       0.000***         AVL21       27       4.92       0.05       27       4.55       0.21       1.96       52       0.050*         AVL22       27       4.96       0.03       27       4.77       0.09       1.97       52       0.040*         AVL23       27       3.51       0.31       27       2.37       0.26       2.78       52       0.003*         AVL24       27       4.92       0.07       27       4.14       0.22       3.28       52       0.000**         AVL25       27       4.66       0.20                                                                                                                                        | AVL14                                          | 27              | 4.85 | 0.09 | 27              | 4.44 | 0.22 | 1.98       | 52 | 0.047*  |
| AVL17       27       5.00       0.11       27       4.59       0.17       2.67       52       0.013***         AVL18       27       4.88       0.06       27       2.88       0.27       3.12       52       0.000***         AVL19       27       4.96       0.03       27       4.59       0.20       1.98       52       0.043*         AVL20       27       4.66       0.13       27       2.70       0.27       3.41       52       0.000***         AVL21       27       4.92       0.05       27       4.55       0.21       1.96       52       0.050*         AVL22       27       4.96       0.03       27       4.77       0.09       1.97       52       0.040*         AVL23       27       3.51       0.31       27       2.37       0.26       2.78       52       0.003*         AVL24       27       4.92       0.07       27       4.14       0.22       3.28       52       0.000**         AVL25       27       4.66       0.20       27       3.62       0.30       2.80       52       0.003**                                                                                                                                                                                     | AVL15                                          | 27              | 5.00 | 0.00 | 27              | 4.66 | 0.18 | 1.97       | 52 | 0.026*  |
| AVL18       27       4.88       0.06       27       2.88       0.27       3.12       52       0.000***         AVL19       27       4.96       0.03       27       4.59       0.20       1.98       52       0.043*         AVL20       27       4.66       0.13       27       2.70       0.27       3.41       52       0.000**         AVL21       27       4.92       0.05       27       4.55       0.21       1.96       52       0.050*         AVL22       27       4.96       0.03       27       4.77       0.09       1.97       52       0.040*         AVL23       27       3.51       0.31       27       2.37       0.26       2.78       52       0.003*         AVL24       27       4.92       0.07       27       4.14       0.22       3.28       52       0.000**         AVL25       27       4.66       0.20       27       3.62       0.30       2.80       52       0.003**                                                                                                                                                                                                                                                                                                     | AVL16                                          | 27              | 4.40 | 0.21 | 27              | 3.00 | 0.30 | 3.79       | 52 | 0.000** |
| AVL19       27       4.96       0.03       27       4.59       0.20       1.98       52       0.043*         AVL20       27       4.66       0.13       27       2.70       0.27       3.41       52       0.000**         AVL21       27       4.92       0.05       27       4.55       0.21       1.96       52       0.050*         AVL22       27       4.96       0.03       27       4.77       0.09       1.97       52       0.040*         AVL23       27       3.51       0.31       27       2.37       0.26       2.78       52       0.003*         AVL24       27       4.92       0.07       27       4.14       0.22       3.28       52       0.000***         AVL25       27       4.66       0.20       27       3.62       0.30       2.80       52       0.003***                                                                                                                                                                                                                                                                                                                                                                                                                  | AVL17                                          | 27              | 5.00 | 0.11 | 27              | 4.59 | 0.17 | 2.67       | 52 | 0.013** |
| AVL20       27       4.66       0.13       27       2.70       0.27       3.41       52       0.000**         AVL21       27       4.92       0.05       27       4.55       0.21       1.96       52       0.050*         AVL22       27       4.96       0.03       27       4.77       0.09       1.97       52       0.040*         AVL23       27       3.51       0.31       27       2.37       0.26       2.78       52       0.003*         AVL24       27       4.92       0.07       27       4.14       0.22       3.28       52       0.000**         AVL25       27       4.66       0.20       27       3.62       0.30       2.80       52       0.003**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVL18                                          | 27              | 4.88 | 0.06 | 27              | 2.88 | 0.27 | 3.12       | 52 | 0.000** |
| AVL21       27       4.92       0.05       27       4.55       0.21       1.96       52       0.050*         AVL22       27       4.96       0.03       27       4.77       0.09       1.97       52       0.040*         AVL23       27       3.51       0.31       27       2.37       0.26       2.78       52       0.003*         AVL24       27       4.92       0.07       27       4.14       0.22       3.28       52       0.000***         AVL25       27       4.66       0.20       27       3.62       0.30       2.80       52       0.003***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AVL19                                          | 27              | 4.96 | 0.03 | 27              | 4.59 | 0.20 | 1.98       | 52 | 0.043*  |
| AVL22       27       4.96       0.03       27       4.77       0.09       1.97       52       0.040*         AVL23       27       3.51       0.31       27       2.37       0.26       2.78       52       0.003*         AVL24       27       4.92       0.07       27       4.14       0.22       3.28       52       0.000***         AVL25       27       4.66       0.20       27       3.62       0.30       2.80       52       0.003***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVL20                                          | 27              | 4.66 | 0.13 | 27              | 2.70 | 0.27 | 3.41       | 52 | 0.000** |
| AVL23     27     3.51     0.31     27     2.37     0.26     2.78     52     0.003*       AVL24     27     4.92     0.07     27     4.14     0.22     3.28     52     0.000**       AVL25     27     4.66     0.20     27     3.62     0.30     2.80     52     0.003**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AVL21                                          | 27              | 4.92 | 0.05 | 27              | 4.55 | 0.21 | 1.96       | 52 | 0.050*  |
| AVL24     27     4.92     0.07     27     4.14     0.22     3.28     52     0.000**       AVL25     27     4.66     0.20     27     3.62     0.30     2.80     52     0.003**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AVL22                                          | 27              | 4.96 | 0.03 | 27              | 4.77 | 0.09 | 1.97       | 52 | 0.040*  |
| AVL25 27 4.66 0.20 27 3.62 0.30 2.80 52 0.003**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVL23                                          | 27              | 3.51 | 0.31 | 27              | 2.37 | 0.26 | 2.78       | 52 | 0.003*  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVL24                                          | 27              | 4.92 | 0.07 | 27              | 4.14 | 0.22 | 3.28       | 52 | 0.000** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVL25                                          | 27              | 4.66 | 0.20 | 27              | 3.62 | 0.30 | 2.80       | 52 | 0.003** |
| AVL26 27 5.00 0.01 27 4.84 0.09 1.98 52 0.048*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AVL26                                          | 27              | 5.00 | 0.01 | 27              | 4.84 | 0.09 | 1.98       | 52 | 0.048*  |
| AVL27 27 4.81 0.07 27 3.19 0.27 3.44 52 0.000**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVL27                                          | 27              | 4.81 | 0.07 | 27              | 3.19 | 0.27 | 3.44       | 52 | 0.000** |
| AVL28 27 4.59 0.17 27 4.26 0.21 1.066 52 0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AVL28                                          | 27              | 4.59 | 0.17 | 27              | 4.26 | 0.21 | 1.066      | 52 | 0.145   |

\*\* 0.01 level of significance; \* 0.05 level of significance

Ten items show significant differences between the highest and lowest groups when tested at the 0.05 level of significance (AVL 8, AVL 11, AVL 12, AVL 14, AVL 15, AVL 19, AVL 21, AVL 22, AVL 23, and AVL 26), and fifteen items show variations when tested at the 0.01 level of significance. The remaining three items (AVL 4, AVL 9, and AVL 28) from the Audio-Visual Learning (AVL) scale related to classroom management were removed because they did not indicate a significant difference between the highest and lowest groups, as shown in Table 1.

#### 4.2 Validity

The degree to which gathered data accurately depicts the desired conclusion of an investigation is referred to as validity (Ghauri & Gronhaug, 2005; Field, 2005). To ensure both face and content validity, the audio-visual learning (ABL) associated with scale classroom management was subjected to expert validation. The degree to which a measure seems connected to a particular construct, as judged by non-experts such as test takers and legal system officials, is known as face validity. It involves researchers' subjective assessments of the instrument's relevance,

reasonableness, unambiguity, and clarity (Oluwatayo, 2012). Content validity refers to the extent to which an instrument's items reflect the content universe it will be generalized to (Straub et al. 2004). It is crucial to apply content validity during the development of a new survey instrument to ensure it includes essential items and eliminates undesirable ones (Lewis et al., 1995, Boudreau et al., 2001).

# 4.3 Reliability

After verifying validity and the t test, the remaining 25-item questionnaire was applied to 306 samples for testing reliability using Cronbach alpha. Reliability testing is crucial for measuring instrument consistency (Huck, 2007). High internal consistency reliability occurs when scale items measure the same construct. According to Huck, 2007, Whitley, 2002 and Robinson, 2009, The Cronbach Alpha coefficient is the most commonly used internal consistency measure, especially when using Likert scales.

The study used the Cronbach alpha Test for Non-additivity to evaluate the internal consistency of the Audio-Visual learning (AVL) related classroom management Scale. The coefficient of

internal consistency assumes that items measuring the same construct should correlate (Cronbach, 1951; Kimberlin & Winterstein, 2008). The study analysed 25 items from the Audiovisual learning scale, covering its five subdimensions.

Table 2: Cronbach Alpha of the Audio-Visual learning Scale (AVLS)

|                        |     | (211          | ,    |       |                     |
|------------------------|-----|---------------|------|-------|---------------------|
| Dimensions             | n   | Total<br>Item | Mean | SD    | Cronbach's<br>Alpha |
| Time<br>Management     | 306 | 4             | 3.69 | 0.958 | 0.544               |
| Content<br>Preparation | 306 | 4             | 4.05 | 0.763 | 0.507               |
| Student<br>Perception  | 306 | 5             | 4.66 | 0.402 | 0.426               |
| Class<br>Control       | 306 | 4             | 4.37 | 0.631 | 0.506               |
| Child<br>Psychology    | 306 | 4             | 3.85 | 0.795 | 0.566               |
| Teacher<br>Preparation | 306 | 4             | 4.42 | 0.621 | 0.523               |
| AVLS                   | 306 | 25            | 4.23 | 0.448 | 0.756               |

Table 2 indicates that the Audio-Visual Learning Scale (AVLS) has a Cronbach's Alpha of 0.756, "No absolute rules exist for internal consistencies, however most agree on a minimum internal consistency coefficient of .70 (Whitley, 2002, Robinson, 2009)". Other dimensions have alpha values of 0.544, 0.507, 0.426, 0.506, 0.566, and 0.523. As to (Duzgun & Kirkic, 2023; Hinkin, 1995), the analysis's Cronbach Alpha coefficient ought to be a minimum of 0.60 to ensure internal consistency and reliability. Four reliability cut-off points have been proposed by Hinton et al. (2004): good reliability (0.90 and above), high reliability (0.70-0.90), moderate reliability (0.50-0.70), and low reliability (0.50 and below) (Hinton et al., 2004). Two items have been excluded due to the low number obtained after Cronbach Alpha reliability test.

#### 4.4 Final Scale

The 23 items on the Audio-Visual Learning Scale are divided into six dimensions: teacher preparation, student perception, class control, time management, content preparation, and child psychology, all of which were mentioned in a previous study by Samaddar et al., 2023 (Samaddar et al., 2023).

Table 3: Final form of Audio-Visual learning Scale

| SI. NO. | Total Items      |                  |   |
|---------|------------------|------------------|---|
| 1       | Time Management  | 1, 2, 3,         | 3 |
| 2       | Content Complete | 4, 5, 6,7        | 4 |
| 3       | Student Interest | 8, 9, 10, 11, 12 | 5 |
| 4       | Class Control    | 13, 14, 15, 16   | 4 |
| 5       | Child Psychology | 17, 18, 19       | 3 |
| 6       | 4                |                  |   |
| Audio   | 23               |                  |   |

#### 5. Discussion

The study used a 28-item Audio-Visual learning measure for item evaluation after the pilot run. Verma recommended assessing quality using item DI value rather than difficulty (Varma, 2008; Emmer & Gerwels, 2005; Emmer & Hickman, 1991). Twenty-five items were accepted using a 0.05 level and 0.01 level of significance 't'-test; AVL 8, AVL 11, AVL 12, AVL 14, AVL 15, AVL 19, AVL 21, AVL 22, AVL 23, and AVL 26 items were accepted at the 0.05 level, and AVL 1, AVL 2, AVL 3, AVL 5, AVL 6, AVL 7, AVL 10, AVL 13, AVL 16, AVL 17, AVL 18, AVL 20, AVL 24, AVL 25, AVL 27 items were accepted at the 0.01 level, whereas two items (AVLS 4, AVL 9, and AVLS 28) that showed no significant difference between the higher and lower groups were discarded so no significant items were removed (Garret, 1984). The reliability is later confirmed using the Cronbach's alpha test, which has a value of 0.756. This leads to the exclusion of two items (AVL 2, AVL 21). Based on statistical analyses, a valid, reliable, and usable scale with 23 items and 6 dimensions has been determined.

#### 6. Conclusion

The Audio-Visual learning is a method that can be used in the classroom management for all type of student from childhood to adolescence. Teachers believe visual aids create an enjoyable learning environment by incorporating sound, light, and colour, stimulating student interest and improving comprehension by allowing students to see what is happening (Jain & Billaiya, 2017). In audio-visual scenes, humans can perceive and infer interactions between objects, aiming for a more human-like perception. Audio-visual learning media develops students' cognitive skills, enabling inductive conclusion-taking and attitude-taking towards environmental phenomena, while also enhancing their soft skills, enabling assumptions and decisionmaking in problem-solving efforts (Sarwinda et al., 2020). Some Studies reveal that audio-visual models may not always outperform uni-modal ones, particularly in recognition tasks, due to the neglect of different learning characteristics in training (Xiao et al., 2020; Wang, 2020; Peng, 2022). Overall, students' interest in the audio-visual learning materials is increased, which may support their strong learning motivation to participate in the classroom learning process (Noer, 2012). Finally, it can be said that using this scale, a teacher can use the Audio-Visual Learning Scale to check how effective classroom management will be.

#### References

Acharya, A. S., Prakash, A., Saxena, P., & Nigam, A. (2013). Sampling: Why and how of it. *Indian Journal of Medical Specialties*, 4(2), 330-333. http://dx.doi.org/10.7713/ijms.2013.0032

Anzaku, F. 2011. "Library Experts Speaks on Audio Visual material. A paper presented at the United Nations Educational." Scientific and Cultured Organization (UNESCO) World Day of Audio-Visual Heritage, Lafia.

Best, J. W., & Kahn, J. V. (2016). Research in education. Pearson Education India.

Bhardwaj, P. (2019). Types of sampling in research. *Journal of the Practice of Cardiovascular* Sciences, 5(3), 157. https://doi.org/10.4103/jpcs.jpcs\_62\_19

Bichi, A. A. (2015). Item analysis using derived science achievement test data. *International Journal of Science and Research*, 4(5):1655-1662. https://www.researchgate.net/publication/277323397\_Item\_Analysis\_using\_a\_Derived\_Science\_Achievement\_Test\_Data

Boudreau, M., Gefen, D. & Straub, D. (2001). Validation in IS research: A state-of-the-art assessment. *MIS Quarterly*, 25, 1-24. https://www.researchgate.net/publication/220260223

- $\label{lem:condition} Validation\_in\_Information\_Systems\_Research\_A\_State-of-the-Art\_Assessment$
- Chang, D. L., Ding, Y. F., Xie, J. Y., Bhunia, A. K., Li,X. X., Ma, Z. Y., Wu, M., Guo, J. & Song, Y. Z. (2020). The devil is in the channels: Mutual-channel loss for fine-grained image classification. IEEE Transactions on Image Processing, vol. 29, pp. 4683–4695, DOI: 10.1109/TIP.2020.297 3812. https://doi.org/10.1109/TIP.2020.2973812
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. *Psychometrika*, 16, 297–334. https://doi.org/10.1007/BF02310555
- Ding, Y., Ma, Z. H., Wen, S., Xie, J., Chang, D., Si, Z. W., Wu, M. & Ling, H. B. (2021). AP-CNN: Weakly super vised attention pyramid convolutional neural network for fine-grained visual classification. *IEEE Transactions on Image Processing*, 30: 2826–2836, https://dl.acm.org/doi/10.1109/TIP.2021.3055617
- Duzgun, G. & Kirkic, K. A. (2023). A developmental study of the attitude scale towards teaching arabic language (ASTTAL): Reliability and validity analysis. *International Journal of Psychology and Educational Studies*, 10(2): 406-421. https://files.eric.ed.gov/fulltext/EJ1382217.pdf
- Emmer, E. T., & Gerwels, M. C. (2005). Establishing Classroom Management For Cooperative Learning. Paper presented at the Annual Meeting of the American Educational Research Association, Montreal, Canada. (ERIC Number: ED490457) https://files.eric.ed.gov/fulltext/ED490457.pdf
- Emmer, E. T., & Hickman, J. (1991). "Teacher Efficacy in Classroom Management and Discipline." *Educational and Psychological Measurement*, *51*(3): 755-765. https://doi.org/10.1177/0013164491513027
- Farooq, U. (2014). Audio Visual Aids in Education: Definition, Types and Objectives. Study Lecture Notes. Retrieved August 28th, 2024, from http://www.studylecture notes.com/curriculum-instructions/audio-visual-aids-ineducations-definition-types
- Field, A. P. (2005). Discovering Statistics Using SPSS, Sage Publications Inc
- Fu, C.Y., Wu, X., Hu, Y.B., Huang, H. B. & He, R (2019). Dual variational generation for low shot heterogeneous face re cognition. *In Proceedings of Advances in Neural Informa tion Processing Systems*, Vancouver, Canada, pp. 2670–2679. https://papers.neurips.cc/paper\_files/paper/2019/hash/b5a1fc2085986034e448d2ccc5bb9703-Abstract.html
- Garret, H.E. (1984). Statistics in Psychology and Education. Bombay, Indfia: Vakils Feffeer and Simons Ltd. 334
- Ghauri, P. & Gronhaug, K. (2005). Research Methods in Business Studies, Harlow, FT/Prentice Hall.
- Hasanova, M. (2023). BASIC CONCEPTS ABOUT AUDIOVISUAL METHOD. Norwegian Journal of development of the International Science. https://doi.org/10.5281/zenodo.10054961
- He, R., Zheng, W.S., & Hu. B. G. (2011). Maximum Corr entropy criterion for robust face recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(8): 1561–1576. https://pubmed.ncbi.nlm.nih.gov/21135440/
- Hetzel, S. M. (1997). Basic Concept in Item and Test Analysis. Texas A&M University.
- Hinkin, T. R. (1995). A review of scale development practices in the study of organizations. *Journal of Management*, 21(5), 967–988. https://doi.org/10.1177/014920639502100509
- Hinton, P. R., Brownlow, C., Mcmurray, I. & Cozens, B. (2004). SPSS explained, East Sussex, England, Routledge Inc. https://doi.org/10.4324/9780203642597
- Huck, S. W. (2007). Reading Statistics and Research, *United States of America, Allyn & Bacon*. University of California.

- Jain, Dr. P. & Billaiya, R. (2017). Impact of Visual Teaching on School Students. International Journal of Advances in Scientific Research and Engineering, 3(5), 178-181. https://www.academia.edu/34368523/Impact\_of\_Visual\_T eaching\_on\_School\_Students
- Javid, B. (2022). Characteristics of online learning. *Polish Journal*of Science. https://www.researchgate.net/publication/
  366570322\_CHARACTERISTICS\_OF\_ONLINE\_LEARNI
  NG
- Jankowski, Katherine, R., B., Kevin, J., Flannelly & Laura T. Flannelly. (2018). " The t-test: An Influential Inferential Tool in Chaplaincy and Other Healthcare Research" *Journal of Health Care Chaplaincy*, 24(1), https://doi.org/10.1080/08854726.2017.13350508.
- Kimberlin, C.L. & Winterstein, A. G. (2008). Validity and reliability of measurement instruments used in research. American Journal of Health-System Pharmacist, 65(1): 2276-2284 https://doi.org/10.2146/ajhp070364
- Krishna, G., Tran, C., Yu, J. G. & Tewfik, A. H. (2019). Speech
  Recognition with No Speech or With Noisy
  Speech. In Proceedings of IEEE International Conference on
  Acoustics, Speech and Signal
  Processing, IEEE, Brighton, UK, 1090–1094. https://doi.
  org/10.23919/EUSIPCO.2019.8902943
- Lewis, B. R., Snyder, C. A. & Rainer, K. R. (1995). An empirical assessment of the Information Resources Management construct. *Journal of Management Information Systems*, 12(1): 199-223. https://dlnext.acm.org/doi/abs/10.1080/07421222.1995.11518075
- Li, A. X., Zhang, K. X. & Wang, L. W. (2019). Zero-shot fine grained classification by deep feature learning with semantics. *International Journal of Automation and Computing*, 16(5):563–574. https://link.springer.com/article/10.1007/s11633-019-1177-8
- Martin, N.K., Yin, Z. & Baldwin, B. (1998). Classroom management training, class size and graduate study: *Do these variables impact teachers' beliefs regarding classroom management style?* Online available from http://files.eric.ed.gov/fulltext/ED420671.pdf
- Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, & Keshri A. (2019). "Descriptive statistics and normality tests for statistical data". *Ann Card Anaesth*, 22(1):67-72. https://doi.org/10.4103/aca.aca\_157\_18
- Noer, A. M. (2012). Peningkatan proses belajar-mengajar kimia melalui pemanfaatan VCD di SMAMuhammadiyah Pekanbaru. *Jurnal Pendidikan Pemanfaatan Program Media Audio Visual.* 1(02):40-47. https://download.garuda.kemdikbud.go.id/article.php?article=1404450&val=2291&title=PENINGKATAN%20PROSES%20BELAJAR-MENGAJAR%20KIMIA%20MELALUI%20PEMANFAA TAN%20VCD%20DI%20SMA%20MUHAMMADIYAH %20PEKANBARU
- Oluwatayo, J. (2012). Validity and reliability issues in educational research. *Journal of Educational and Social Research*, *2*(2): 391-400 https://www.richtmann.org/journal/index.php/jesr/article/view/11851
- Peng, X., Wei, Y., Deng, A., Wang, D. & Hu, D. (2022). "Balanced multimodal learning via on-the-fly gradient modulation," Computer Vision and Pattern Recognition, https://doi.org/10.48550/arXiv.2203.15332
- Popham, W.J. (1981). Modern educational measurement. Englewood Cliff, NJ: Prentice-Hall. https://archive.org/ details/moderneducationa0000wjam
- Rather, A. R. (2004). Essentials Instructional Technology, published by Daryagaj New Delhi. https://books.google.

- co.in/books/about/Essentials\_Of\_Instructional\_Technolog y.html?id=\_d7TH8IOYhIC&redir\_esc=y
- Rasul, S., Bukhsh, Q., & Batool, S. (2011). A study to analyse the effectiveness of audio-visual aids in teaching learning process at university level. *Procedia Social and Behavioural Sciences*, 28:78 81. https://doi.org/10.1016/j.sbspro. 2011.11.016
- Robinson, J. (2009). Triandis theory of interpersonal behaviour in understanding software privace behaviour in the South African context. Masters degree, University of the Witwatersrand. https://wiredspace.wits.ac.za/server/api/core/bitstreams/413b1902-029d-4d1d-89c2-a5ac0d9d7b27/content
- Sarwinda, K., Rohaeti, E., & Fatharani, M. (2020). The development of audio-visual media with contextual teaching learning approach to improve learning motivation and critical thinking skills. *Psychology, Evaluation, and Technology in Educational Research*, 2(2),98-114. http://dx.doi.org/10.33292/petier.v2i2.12
- Savran, A. & Çakıroglu, J. (2004). Preservice science teachers' orientations to classroom management. Hacettepe *University Journal of Education Faculty*, 26:124-130. http://www.efdergi.hacettepe.edu.tr/yonetim/icerik/makal eler/1086-published.pdf
- Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J. and Ekelid. M. (1995). Speech recognition with primarily temporal cues science, 270(5234): 303–304. https://doi.org/10.1126/science.270.5234.303
- Straub, D., Boudreau, M.-C. & Gefen, D. (2004). Validation guidelines for IS positivist research. *Communications of the Association for Information Systems*, 13, 380-427. https://doi.org/10.17705/1CAIS.01324
- Thompson, B., & Levitov, J. E. (1985). Using microcomputers to score and evaluate test items. *Collegiate Microcomputer*, 3(2): 163-168. https://eric.ed.gov/?id=EJ320128

- Tong, S.G., Huang, Y. Y., & Tong, Z. M. (2019). A robust face re cognition method combining lb with multi-mirror symmetry for images with various face interferences. *International Journal of Automation and Computing*, 16(5):671–682. https://doi.org/10.1007/s11633-018-1153-8
- Varma, S. (2008). Preliminary item statistics using point-biserial correlation and p-values. Available: https://jcesom.marshall.edu/media/24104/Item-Stats-Point-Biserial.pdf
- Vilaca, L., Yu, Y. & Viana, P. (2022). "Recent advances and challenges in deep audio-visual correlation learning," *Computer Science*. https://doi.org/10.48550/arXiv.2202. 13673
- Wang, W.,Tran, D. & Feiszli, M. (2020). "What makes training multi modal classification networks hard?" in CVPR. https://arxiv.org/abs/1905.12681
- Whitley, B. E. (2002). Principals of Research and Behavioural Science, Boston, McGraw-Hill. https://archive.org/details/principlesofrese0000whit
- Wiersma, W. & Jurs, S.G. (1990). Educational measurement and testing (2nd ed.). Boston, MA: Allyn and Bacon. https://openlibrary.org/books/OL14963829M/Educational \_\_measurement\_and\_testing
- Xiao, F., Lee, Y. J., Grauman, K., Malik, J. & Feichtenhofer, C. (2020). "Audiovisual slowfast networks for video recognition," Computer Vision and Pattern Recognition 1 http://export.arxiv.org/pdf/2001.08740
- Yerin-Guneri, O., Bulut, S., & Ozdemir, Y. (2004). Development of teacher efficacy in classroom management and discipline scale. Unpublished manuscript.
- Zhu, H., Luo, M.-D., Wang, R., Zheng, A.-H. & He, R. (2021). "Deep audio-visual learning: A survey," *International Journal of Automation and Computing*. 18(5234):1-26 https://www.researchgate.net/publication/350904716\_Deep\_Audio-visual\_Learning\_A\_Survey