Genetic Methods for Isolating and Reading Chromosomes

Downloads

Download the Article:

Authors

  • Aweza Sleman Qadir Department of Biology, College of Science, University of Raparin, Rania, 46012, Sulaymaniyah, Iraq https://orcid.org/0009-0009-7169-0997
  • Ahmed Shallal Department of Biology, College of Science, University of Raparin, Rania, 46012, Sulaymaniyah, Iraq https://orcid.org/0000-0001-7841-6178
  • Ibrahim Nazem Qader Department of Physics, College of Science, University of Raparin, Rania, 46012, Sulaymaniyah, Iraq https://orcid.org/0000-0003-1167-3799
https://doi.org/10.55559/jjbrpac.v1i3.291

Keywords:

Chromosome, FISH, Giemsa-Banding, CGH, Hybridization

Abstract

This paper offers a comprehensive examination of chromosomal abnormalities and emphasizes the pivotal role of chromosome banding in elucidating the intricate mechanisms of human cells. Various facets of chromosome structure and cytogenetic techniques are explored. The incorporation of karyotyping methods such as G-banding, Q-banding, and R-banding enriches our understanding of structural nuances and chromosomal anomalies. Moreover, by focusing on their applications in molecular cytogenetics, the research delves into contemporary approaches like silver staining (NOR), spectral karyotyping, (FISH) techniques, and genomic hybridization. The data is more accessible and comprehensible when presented in a systematic fashion and utilizing a table. In conclusion, this manuscript delivers a valuable overview of chromosome analysis for cytogeneticists, scholars, and individuals keen on expanding their knowledge of the intricacies of chromosome analysis.

References

Barton, C., et al., ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy. PLoS computational biology, 2018. 14(3): p. e1006002. https://doi.org/10.1371/journal.pcbi.1006002 DOI: https://doi.org/10.1371/journal.pcbi.1006002

Harper, P.S., The discovery of the human chromosome number in Lund, 1955–1956. Human Genetics, 2006. 119: p. 226-232. https://doi.org/10.1007/s00439-005-0121-x DOI: https://doi.org/10.1007/s00439-005-0121-x

Chen, X., et al., ChroSegNet: An Attention-Based Model for Chromosome Segmentation with Enhanced Processing. Applied Sciences, 2023. 13(4): p. 2308. https://doi.org/10.3390/app13042308 DOI: https://doi.org/10.3390/app13042308

Zhang, X., et al., Penaeid Shrimp Chromosome Studies Entering the Post-Genomic Era. Genes, 2023. 14(11): p. 2050. https://doi.org/10.3390/genes14112050 DOI: https://doi.org/10.3390/genes14112050

Ng, B.L., Chromosome Analysis and Sorting Using Conventional Flow Cytometers. Current Protocols, 2023. 3(3): p. e718. https://doi.org/10.1002/cpz1.718 DOI: https://doi.org/10.1002/cpz1.718

Imataka, G. and O. Arisaka, Chromosome analysis using spectral karyotyping (SKY). Cell biochemistry and biophysics, 2012. 62: p. 13-17. https://doi.org/10.1007/s12013-011-9285-2 DOI: https://doi.org/10.1007/s12013-011-9285-2

Kornberg, R.D. and Y. Lorch, Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 1999. 98(3): p. 285-294. https://doi.org/10.1016/S0092-8674(00)81958-3 DOI: https://doi.org/10.1016/S0092-8674(00)81958-3

Gilbert, N., et al., Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell, 2004. 118(5): p. 555-566. https://doi.org/10.1016/j.cell.2004.08.011 DOI: https://doi.org/10.1016/j.cell.2004.08.011

Naumova, N. and J. Dekker, Integrating one-dimensional and three-dimensional maps of genomes. Journal of cell science, 2010. 123(12): p. 1979-1988. https://doi.org/10.1242/jcs.051631 DOI: https://doi.org/10.1242/jcs.051631

Balagalla, U.B., J. Samarabandu, and A. Subasinghe, Automated human chromosome segmentation and feature extraction: Current trends and prospects. F1000Research, 2022. 11: p. ISCB Comm J-301. https://doi.org/10.12688/f1000research.84360.1 DOI: https://doi.org/10.12688/f1000research.84360.1

McFadden, D.E. and J. Friedman, Chromosome abnormalities in human beings. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1997. 396(1-2): p. 129-140. https://doi.org/10.1016/S0027-5107(97)00179-6 DOI: https://doi.org/10.1016/S0027-5107(97)00179-6

Montazerinezhad, S., A. Emamjomeh, and B. Hajieghrari, Chromosomal abnormality, laboratory techniques, tools and databases in molecular Cytogenetics. Molecular Biology Reports, 2020. 47: p. 9055-9073. https://doi.org/10.1007/s11033-020-05895-5 DOI: https://doi.org/10.1007/s11033-020-05895-5

de Oliveira Rodrigues, V., et al., Genetics in human reproduction. JBRA Assisted Reproduction, 2020. 24(4): p. 480. https://doi.org/10.5935/1518-0557.20200007 DOI: https://doi.org/10.5935/1518-0557.20200007

Lai, G., et al., Differences in IGF axis‐related proteins in amniotic fluid of trisomy 21 and trisomy 18 using a multiple reaction monitoring approach. Prenatal Diagnosis, 2014. 34(12): p. 1146-1152. https://doi.org/10.1002/pd.4443 DOI: https://doi.org/10.1002/pd.4443

Arora, T. and R. Dhir, A novel approach for segmentation of human metaphase chromosome images using region based active contours. Int. Arab J. Inf. Technol., 2019. 16(1): p. 132-137.

Subasinghe, A., et al., Centromere detection of human metaphase chromosome images using a candidate based method. bioRxiv, 2015: p. 032110. https://doi.org/10.1101/032110 DOI: https://doi.org/10.1101/032110

Speicher, M.R. and N.P. Carter, The new cytogenetics: blurring the boundaries with molecular biology. Nature reviews genetics, 2005. 6(10): p. 782-792. https://doi.org/10.1038/nrg1692 DOI: https://doi.org/10.1038/nrg1692

Estandarte, A.K.C., A review of the different staining techniques for human metaphase chromosomes. Department of Chemistry, University College London, University of London, 2012.

Dolan, M., The role of the Giemsa stain in cytogenetics. Biotechnic & Histochemistry, 2011. 86(2): p. 94-97. https://doi.org/10.3109/10520295.2010.515493 DOI: https://doi.org/10.3109/10520295.2010.515493

Yilmaz, I.C., et al. An improved segmentation for raw G-band chromosome images. in 2018 5th International Conference on Systems and Informatics (ICSAI). 2018. IEEE. https://doi.org/10.1109/ICSAI.2018.8599328 DOI: https://doi.org/10.1109/ICSAI.2018.8599328

Džanko, A., A. El Sayed, and S. Međedović, A comprehensive review of the Multidisciplinarity in Karyotypization. Health and Technology, 2020. 10(1): p. 101-109. https://doi.org/10.1007/s12553-019-00389-2 DOI: https://doi.org/10.1007/s12553-019-00389-2

Mukhopadhyay, R., et al., Mammalian Chromosome Analysis and Sorting by Flow Cytometry. Current Protocols, 2023. 3(5): p. e785. https://doi.org/10.1002/cpz1.785 DOI: https://doi.org/10.1002/cpz1.785

Bickmore, W.A., Karyotype analysis and chromosome banding. e LS, 2001. https://doi.org/10.1038/npg.els.0001160 DOI: https://doi.org/10.1038/npg.els.0001160

Derry, J.M., H.D. Ochs, and U. Francke, Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell, 1994. 78(4): p. 635-644. https://doi.org/10.1016/0092-8674(94)90528-2 DOI: https://doi.org/10.1016/0092-8674(94)90528-2

Murali, P., et al. Training lay counselors with virtual agents to promote vaccination. in Proceedings of the 22nd ACM International Conference on Intelligent Virtual Agents. 2022.

Drouin, R., N. Lemieux, and C.-L. Richer, Analysis of DNA replication during S-phase by means of dynamic chromosome banding at high resolution. Chromosoma, 1990. 99(4): p. 273-280. https://doi.org/10.1007/BF01731703 DOI: https://doi.org/10.1007/BF01731703

Drouin, L.M., et al., Correction between the gross motor function measure scores and gait spatiotemporal measures in children with neurological impairments. Developmental Medicine & Child Neurology, 1996. 38(11): p. 1007-1019. https://doi.org/10.1111/j.1469-8749.1996.tb15061.x DOI: https://doi.org/10.1111/j.1469-8749.1996.tb15061.x

Cook, P.R., A chromomeric model for nuclear and chromosome structure. Journal of cell science, 1995. 108(9): p. 2927-2935. https://doi.org/10.1242/jcs.108.9.2927 DOI: https://doi.org/10.1242/jcs.108.9.2927

Saleh, H.M., N.H. Saad, and N.A.M. Isa, Overlapping chromosome segmentation using U-Net: convolutional networks with test time augmentation. Procedia Computer Science, 2019. 159: p. 524-533. https://doi.org/10.1016/j.procs.2019.09.207 DOI: https://doi.org/10.1016/j.procs.2019.09.207

Sharma, M., et al. Crowdsourcing for chromosome segmentation and deep classification. in Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2017. https://doi.org/10.1109/CVPRW.2017.109 DOI: https://doi.org/10.1109/CVPRW.2017.109

Wilson, R.D., C. Blight, and S. Langlois, Diagnosing chromosomal abnormalities from “big” to “small” with molecular cytogenetic technology. Journal of Obstetrics and Gynaecology Canada, 2009. 31(5): p. 414-421. https://doi.org/10.1016/S1701-2163(16)34172-X DOI: https://doi.org/10.1016/S1701-2163(16)34172-X

Van Wieren, A., The importance in Spectral Karyotyping (SKY). Bioengineering Studies, 2022. 3(1): p. 7-14. https://doi.org/10.37868/bes.v3i1.id214 DOI: https://doi.org/10.37868/bes.v3i1.id214

Baskar, S. and M. Brundha, KARYOTYPING AND ITS RECENT ADVANCES-A REVIEW. PalArch's Journal of Archaeology of Egypt/Egyptology, 2020. 17(7): p. 629-642.

AbouAlaiwi, W.A., I. Rodriguez, and S.M. Nauli, Spectral karyotyping to study chromosome abnormalities in humans and mice with polycystic kidney disease. JoVE (Journal of Visualized Experiments), 2012(60): p. e3887. https://doi.org/10.3791/3887-v DOI: https://doi.org/10.3791/3887-v

Lin, Y., Classical and Molecular Cytogenetics: The Principle and Application of Involved Techniques. Highlights in Science, Engineering and Technology, 2022. 14: p. 239-244. https://doi.org/10.54097/hset.v14i.1789 DOI: https://doi.org/10.54097/hset.v14i.1789

Schrock, E., et al., Spectral karyotyping of human, mouse, rat and ape chromosomes–applications for genetic diagnostics and research. Cytogenetic and Genome Research, 2006. 114(3-4): p. 199-221. https://doi.org/10.1159/000094203 DOI: https://doi.org/10.1159/000094203

Chen, Y., et al., Karyotyping of circulating tumor cells for predicting chemotherapeutic sensitivity and efficacy in patients with esophageal cancer. BMC cancer, 2019. 19: p. 1-7. https://doi.org/10.1186/s12885-019-5850-7 DOI: https://doi.org/10.1186/s12885-019-5850-7

Kearney, L., Multiplex-FISH (M-FISH): technique, developments and applications. Cytogenetic and genome research, 2006. 114(3-4): p. 189-198. https://doi.org/10.1159/000094202 DOI: https://doi.org/10.1159/000094202

Uhrig, S., et al., Multiplex-FISH for pre-and postnatal diagnostic applications. The American Journal of Human Genetics, 1999. 65(2): p. 448-462. https://doi.org/10.1086/302508 DOI: https://doi.org/10.1086/302508

Raveendran, S.K., et al., A Case Report of Concurrent IDH1 and NPM1 Mutations in a Novel t(X;2)(q28;p22) Translocation in Acute Myeloid Leukaemia without Maturation (AML-M1). Malaysian Journal of Medical Sciences, 2015. 22: p. 93-97.

Graham, J. and J. Piper, Automatic karyotype analysis. Chromosome analysis protocols, 1994: p. 141-185. https://doi.org/10.1385/0-89603-289-2:141 DOI: https://doi.org/10.1385/0-89603-289-2:141

Madian, N., et al. Graph Partitioning approach for Segmentation of Banding Pattern of G-band Metaphase Human Chromosomes. in 2020 International Conference on Computer Communication and Informatics (ICCCI). 2020. IEEE. https://doi.org/10.1109/ICCCI48352.2020.9104123 DOI: https://doi.org/10.1109/ICCCI48352.2020.9104123

Rowley, J.D., A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973. 243(5405): p. 290-293. https://doi.org/10.1038/243290a0 DOI: https://doi.org/10.1038/243290a0

Ford, C. and J. Hamerton, A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain technology, 1956. 31(6): p. 247-251. https://doi.org/10.3109/10520295609113814 DOI: https://doi.org/10.3109/10520295609113814

Nabil, A. and F. Sarra, Q-Banding. Reference Module in Life Sciences; Elsevier: Oxford, UK, 2017: p. 1-3. https://doi.org/10.1016/B978-0-12-809633-8.06986-7 DOI: https://doi.org/10.1016/B978-0-12-809633-8.06986-7

Makino, S. and I. NISHIMURA, Water-pretreatment squash technic; a new and simple practical method for the chromosome study of animals. Stain Technology, 1952. 27(1): p. 1-7. https://doi.org/10.3109/10520295209105053 DOI: https://doi.org/10.3109/10520295209105053

Caspersson, T., et al., Chemical differentiation along metaphase chromosomes. Experimental cell research, 1968. 49(1): p. 219-222. https://doi.org/10.1016/0014-4827(68)90538-7 DOI: https://doi.org/10.1016/0014-4827(68)90538-7

Weisblum, B. and P.L. De Haseth, Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proceedings of the National Academy of Sciences, 1972. 69(3): p. 629-632. https://doi.org/10.1073/pnas.69.3.629 DOI: https://doi.org/10.1073/pnas.69.3.629

Kaneko, Y., et al., Correlation of karyotype with clinical features in acute lymphoblastic leukemia (ALL). Cancer research, 1982. 42: p. 2918-29.

Schreck, R.R. and C.M. Distèche, Chromosome banding techniques. Current protocols in human genetics, 1994(1): p. 4.2. 1-4.2. 36. https://doi.org/10.1002/0471142905.hg0402s00 DOI: https://doi.org/10.1002/0471142905.hg0402s00

Holmquist, R., The method of parsimony: an experimental test and theoretical analysis of the adequacy of molecular restoration studies. Journal of Molecular Biology, 1979. 135(4): p. 939-958. https://doi.org/10.1016/0022-2836(79)90521-7 DOI: https://doi.org/10.1016/0022-2836(79)90521-7

Padilla-Nash, H.M., et al., Spectral karyotyping analysis of human and mouse chromosomes. Nature protocols, 2006. 1(6): p. 3129-3142. https://doi.org/10.1038/nprot.2006.358 DOI: https://doi.org/10.1038/nprot.2006.358

Zhao, K., et al., Karyotyping of aneuploid and polyploid plants from low coverage whole-genome resequencing. BMC Plant Biology, 2023. 23(1): p. 1-10. https://doi.org/10.1186/s12870-023-04650-9 DOI: https://doi.org/10.1186/s12870-023-04650-9

Volpi, E.V. and J.M. Bridger, FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques, 2008. 45(4): p. 385-409. https://doi.org/10.2144/000112811 DOI: https://doi.org/10.2144/000112811

Gall, J.G. and M.L. Pardue, Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences, 1969. 63(2): p. 378-383. https://doi.org/10.1073/pnas.63.2.378 DOI: https://doi.org/10.1073/pnas.63.2.378

Shakoori, A.R., Fluorescence in situ hybridization (FISH) and its applications. Chromosome structure and aberrations, 2017: p. 343-367. https://doi.org/10.1007/978-81-322-3673-3_16 DOI: https://doi.org/10.1007/978-81-322-3673-3_16

Wan, T.S. and E.S. Ma, Molecular cytogenetics: an indispensable tool for cancer diagnosis. Chang Gung medical journal, 2012. 35(2): p. 96-110. https://doi.org/10.4103/2319-4170.106161 DOI: https://doi.org/10.4103/2319-4170.106161

Bartlett, J.M. and A. Forsyth, Detection of HER2 gene amplification by fluorescence in situ hybridization in breast cancer. Breast Cancer Research Protocols, 2006: p. 309-322. https://doi.org/10.1385/1-59259-969-9:309 DOI: https://doi.org/10.1385/1-59259-969-9:309

du Manoir, S., et al., Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Human genetics, 1993. 90: p. 590-610. https://doi.org/10.1007/BF00202476 DOI: https://doi.org/10.1007/BF00202476

Voullaire, L., et al., Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridization. Human genetics, 2000. 106: p. 210-217. https://doi.org/10.1007/s004399900225 DOI: https://doi.org/10.1007/s004390051030

Kallioniemi, O.P., et al., Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes, Chromosomes and Cancer, 1994. 10(4): p. 231-243. https://doi.org/10.1002/gcc.2870100403 DOI: https://doi.org/10.1002/gcc.2870100403

Sanlaville, D., et al., Molecular karyotyping in human constitutional cytogenetics. European journal of medical genetics, 2005. 48(3): p. 214-231. https://doi.org/10.1016/j.ejmg.2005.04.013 DOI: https://doi.org/10.1016/j.ejmg.2005.04.013

Howell, W.t. and D. Black, Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. experientia, 1980. 36(8): p. 1014-1015. https://doi.org/10.1007/BF01953855 DOI: https://doi.org/10.1007/BF01953855

Ploton, D., et al., Improvement in the staining and in the visualization of the argyrophilic proteins of the nucleolar organizer region at the optical level. The Histochemical Journal, 1986. 18: p. 5-14. https://doi.org/10.1007/BF01676192 DOI: https://doi.org/10.1007/BF01676192

Veerabhadrappa, S.K., et al., Karyotyping: Current perspectives in diagnosis of chromosomal disorders. Sifa Medical Journal, 2016. 3(2): p. 35.

Romanenko, S., et al., Chromosomal evolution in Rodentia. Heredity, 2012. 108(1): p. 4-16. https://doi.org/10.1038/hdy.2011.110 DOI: https://doi.org/10.1038/hdy.2011.110

Macville, M., et al., Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements. Histochemistry and cell biology, 1997. 108: p. 299-305. https://doi.org/10.1007/s004180050169 DOI: https://doi.org/10.1007/s004180050169

Harada, N., G-banding: Fetal chromosome analysis by using chromosome banding techniques. Fetal Morph Functional Diagnosis, 2021: p. 309-318. https://doi.org/10.1007/978-981-15-8171-7_23 DOI: https://doi.org/10.1007/978-981-15-8171-7_23

Chrisman, C.L., G.P. Briley, and G.C. Waldbieser, In situ hybridization and high-resolution banding of chromosomes, in Gene-Mapping Techniques and Applications. 2020, CRC Press. p. 113-126. https://doi.org/10.1201/9781003066712-8 DOI: https://doi.org/10.1201/9781003066712-8

Wang, J., et al., An Integral R-Banded Karyotype Analysis System of Bone Marrow Metaphases Based on Deep Learning. Archives of Pathology & Laboratory Medicine, 2023. https://doi.org/10.5858/arpa.2022-0533-OA DOI: https://doi.org/10.5858/arpa.2022-0533-OA

Zhu, J.J., et al., C-banding and AgNOR-staining were still effective complementary methods to indentify chromosomal heteromorphisms and some structural abnormalities in prenatal diagnosis. Molecular Cytogenetics, 2019. 12: p. 1-11. https://doi.org/10.1186/s13039-019-0453-1 DOI: https://doi.org/10.1186/s13039-019-0453-1

Jiang, J., Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Research, 2019. 27(3): p. 153-165. https://doi.org/10.1007/s10577-019-09607-z DOI: https://doi.org/10.1007/s10577-019-09607-z

Jiang, Q., et al., Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019. 13(7): p. 460-466. https://doi.org/10.1038/s41566-019-0398-2 DOI: https://doi.org/10.1038/s41566-019-0398-2

Das, R.R., et al., TOWARDS ANALYSING COMPARATIVE GENOMIC HYBRIDISATION METHOD. Journal of Advanced Scientific Research, 2020. 11(Suppl 04): p. 05-11. https://doi.org/10.1182/bloodadvances.2020002517

Mareschal, S., et al., Challenging conventional karyotyping by next-generation karyotyping in 281 intensively treated patients with AML. Blood Advances, 2021. 5(4): p. 1003-1016. DOI: https://doi.org/10.1182/bloodadvances.2020002517

Wang, J., et al., Assessment of Combined Karyotype Analysis and Chromosome Microarray Analysis in Prenatal Diagnosis: A Cohort Study of 3710 Pregnancies. Genetics Research, 2022. 2022. https://doi.org/10.1155/2022/6791439 DOI: https://doi.org/10.1155/2022/6791439

Sankar, V. and S. Saraojam, Rational selection of Genetic tests in Clinical Practice Part 1-Cytogenetics, FISH and Microarray. Fetus and Newborn, 2021. 1(1): p. 14-18.

Hsiao, C.-H., et al., Prenatal diagnosis using chromosomal microarray analysis in high-risk pregnancies. Journal of Clinical Medicine, 2022. 11(13): p. 3624. https://doi.org/10.3390/jcm11133624 DOI: https://doi.org/10.3390/jcm11133624

Banu, M., A.A.K. Pathan, and K. Chaitanya, Diagnostics for Genetically Inherited Disorders: From Cytogenetics to Genomics Technologies-A Review. Biomedical and Pharmacology Journal, 2023. 16(2). https://doi.org/10.13005/bpj/2646 DOI: https://doi.org/10.13005/bpj/2646

ASHINE, T.A. and T.S. TESEMA, Application of Biotechnology in Diagnosis and Treatment of Human Genetic Disorders. 2019.

M’kacher, R., et al., Telomere and centromere staining followed by M-FISH improves diagnosis of chromosomal instability and its clinical utility. Genes, 2020. 11(5): p. 475. https://doi.org/10.3390/genes11050475 DOI: https://doi.org/10.3390/genes11050475

McKenzie, W. and H. Lubs, Human Q and C chromosomal variations: distribution and incidence. Cytogenetic and Genome Research, 1975. 14(2): p. 97-115. https://doi.org/10.1159/000130330 DOI: https://doi.org/10.1159/000130330

Kumar, S., A. Kiso, and N.A. Kithan, Chromosome Banding and Mechanism of Chromosome Aberrations. Cytogenetics-Classical and Molecular Strategies for Analysing Heredity Material, 2021: p. 45. https://doi.org/10.5772/intechopen.96242 DOI: https://doi.org/10.5772/intechopen.96242

Aydın Yağmur, E., et al., The first chromosome study of the genera Calchas Birula, 1899 and Neocalchas Yağmur, Soleglad, Fet & Kovařík, 2013 (Scorpiones: Iuridae). Zoology in the Middle East, 2023. 69(1): p. 66-72. https://doi.org/10.1080/09397140.2023.2172838 DOI: https://doi.org/10.1080/09397140.2023.2172838

Liehr, T., Molecular cytogenetics in the era of chromosomics and cytogenomic approaches. Frontiers in Genetics, 2021. 12: p. 720507. https://doi.org/10.3389/fgene.2021.720507 DOI: https://doi.org/10.3389/fgene.2021.720507

Levy, B., et al., Optical genome mapping in acute myeloid leukemia: a multicenter evaluation. Blood Advances, 2023. 7(7): p. 1297-1307. https://doi.org/10.1182/bloodadvances.2022007583 DOI: https://doi.org/10.1182/bloodadvances.2022007583

Dey, P., Fluorescent In Situ Hybridisation Techniques in Pathology: Principle, Technique and Applications, in Basic and Advanced Laboratory Techniques in Histopathology and Cytology. 2023, Springer. p. 229-239. https://doi.org/10.1007/978-981-19-6616-3_21 DOI: https://doi.org/10.1007/978-981-19-6616-3_21

Zhang, J., et al., Comparative cytogenetic analysis of diploid and triploid pacific abalone, Haliotis discus hannai. Cytogenetic and Genome Research, 2023. https://doi.org/10.1159/000535045 DOI: https://doi.org/10.1159/000535045

Chmúrčiaková, N., M. Kašný, and M. Orosová, Cytogenetics of Eudiplozoon nipponicum (Monogenea, Diplozoidae): karyotype, spermatocyte division and 18S rDNA location. Parasitology international, 2020. 76: p. 102031. https://doi.org/10.1016/j.parint.2019.102031 DOI: https://doi.org/10.1016/j.parint.2019.102031

Vimala, Y., S. Lavania, and U.C. Lavania, Chromosome change and karyotype differentiation–implications in speciation and plant systematics. The Nucleus, 2021. 64: p. 33-54. https://doi.org/10.1007/s13237-020-00343-y DOI: https://doi.org/10.1007/s13237-020-00343-y

Hu, Q., E.G. Maurais, and P. Ly, Cellular and genomic approaches for exploring structural chromosomal rearrangements. Chromosome Research, 2020. 28: p. 19-30. https://doi.org/10.1007/s10577-020-09626-1 DOI: https://doi.org/10.1007/s10577-020-09626-1

Published on: 2024-06-01

Also Available On

Note: Third-party indexing sometime takes time. Please wait one week or two for indexing. Validate this article's Schema Markup on Schema.org

How to Cite

Qadir, A. S., Shallal, A., & Qader, I. N. (2024). Genetic Methods for Isolating and Reading Chromosomes. Jabirian Journal of Biointerface Research in Pharmaceutics and Applied Chemistry, 1(3), 6–15. https://doi.org/10.55559/jjbrpac.v1i3.291

Issue

Section

Review Article
2584-2536