Synergistic role of Extended-spectrum beta-lactamases (ESBL) and bacterial structure on antibacterial drugs

Downloads

Download the Article:

Authors

  • Hamadamin Zrar Hamadamin Department of Biology, College of Science, University of Raparin, Rania,46012, Sulaymaniyah, Iraq https://orcid.org/0009-0007-1273-7965
  • Ahmed Farhan Shallal Department of Biology, College of Science, University of Raparin, Rania,46012, Sulaymaniyah, Iraq https://orcid.org/0000-0001-7841-6178
  • Ibrahim Nazem Qader Department of Physics, College of Science, University of Raparin, Rania,46012, Sulaymaniyah, Iraq https://orcid.org/0000-0003-1167-3799
https://doi.org/10.55559/jjbrpac.v1i3.293

Keywords:

Antibacterial drugs, antibiotics, pharmaceutical science, Drugs, Resistance.

Abstract

The illnesses induced by pathogenic microorganisms, particularly bacteria, are progressively on the rise at a global scale. Antibiotics, whether derived from specific microorganisms naturally or altered chemically, play a vital role in managing bacterial infections. These pharmaceuticals hinder or eradicate bacteria through a variety of mechanisms, which include impeding the synthesis of cell walls or cell membranes, inhibiting the production of proteins and specific metabolites, as well as thwarting the synthesis of nucleic acids. Nevertheless, bacteria have the ability to acquire resistance to antibiotic treatment through various means, such as the generation of specific enzymes like extended-spectrum beta-lactamases (ESBL) to degrade the antibiotic, reducing drug absorption by bacterial cells, and modifying target locations. This analysis functions as an extensive manual on antibiotics, concentrating on their historical context, production, and evolution, the interactions of antibiotics within the human body, the different categories of antibiotics and their modes of action against bacteria. However, the emergence of antibiotic resistance, the factors that contribute to bacterial resistance, the significance of extended-spectrum beta-lactamases (ESBL) and their diverse forms in resistance progression, and prospective strategies for addressing antibiotic-resistant bacterial infections are the focal points of this paper.

References

Mohr, KI. History of antibiotics research. In: Current topics in microbiology and immunology. 2016. p. 237–72. https://doi.org/10.1007/82_2016_499

Bartlett, JH. Microorganisms. In: Elsevier eBooks. 2013. p. 291–315.

Waksman SA. What is an Antibiotic or an Antibiotic Substance? Taylor & Francis. https://doi.org/10.1080/00275514.1947.12017635

Barber, M, Garrod, LP, O'grady, F., Antibiotic and chemotherapy. 1971(3rd Edition).

Frieri M, Kumar K, Boutin A. Antibiotic resistance. Journal of Infection and Public Health. 2017;10(4):369–78. https://doi.org/10.1016/j.jiph.2016.08.007

Jacoby GA, Medeiros AA. More extended-spectrum beta-lactamases. Antimicrobial Agents and Chemotherapy. 1991 ;35(9):1697–704. https://doi.org/10.1128/AAC.35.9.1697

Doi Y, Iovleva A, Bonomo RA. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. Journal of Travel Medicine. 2017 ;24(suppl_1):S44–51. https://doi.org/10.1093/jtm/taw102

Durand GA, Raoult D, Dubourg G. Antibiotic discovery: history, methods and perspectives. International Journal of Antimicrobial Agents. 2019 ;53(4):371–82. https://doi.org/10.1016/j.ijantimicag.2018.11.010

Clardy J, Fischbach MA, Currie CR. The natural history of antibiotics. CB/Current Biology. 2009;19(11):R437–41. https://doi.org/10.1016/j.cub.2009.04.0011

Pahlow S, Meisel S, Cialla-May D, Weber K, Rösch P, Popp J. Isolation and identification of bacteria by means of Raman spectroscopy. Advanced Drug Delivery Reviews. 2015;89:105–20. https://doi.org/10.1016/j.addr.2015.04.006

Stewart EJ. Growing unculturable bacteria. Journal of Bacteriology. 2012;194(16):4151–60. https://doi.org/10.1128/JB.00345-12

Pegadraju, H., et al., RECAPITULATION OF ANTIBIOTIC RESISTANCE AND MRSA.

Katz L, Hutchinson CR. Chapter 14. Genetic Engineering of Antibiotic Producing Organisms. In: Annual reports in medicinal chemistry. 1992. p. 129–38. https://doi.org/10.1016/S0065-7743(08)60412-1

Melander RJ, Zurawski DV, Melander C. Narrow-spectrum antibacterial agents. MedChemComm . 2018 ;9(1):12–21. https://doi.org/10.1039/C7MD00528H

Subramaniyam, R. and R.J.I.J.S.N. Vimala, Solid state and submerged fermentation for the production of bioactive substances: a comparative study. 2012. 3(3): p. 480-486.

Nicolaou, K.C. and S.J.T.J.o.a. Rigol, A brief history of antibiotics and select advances in their synthesis. 2018. 71(2): p. 153-184.

Aminov RI. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front Microbiol. 2010;1. http://dx.doi.org/10.3389/fmicb.2010.00134

Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol . 2017;33(3):300. http://dx.doi.org/10.4103/joacp.joacp_349_15

Epand RM, Walker C, Epand RF, Magarvey NA. Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta Biomembr. 2016;1858(5):980–7. http://dx.doi.org/10.1016/j.bbamem.2015.10.018

Newton BA. Mechanisms of antibiotic action. Annu Rev Microbiol. 1965;19(1):209–40. http://dx.doi.org/10.1146/annurev.mi.19.100165.001233

Vollmer W, Blanot D, De Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev. 2008;32(2):149–67. http://dx.doi.org/10.1111/j.1574-6976.2007.00094.x

Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529(7586):336–43. http://dx.doi.org/10.1038/nature17042

Maxon WD. Continuous fermentation: A discussion of its principles and applications. Appl Microbiol. 1955;3(2):110–22. http://dx.doi.org/10.1128/am.3.2.110-122.1955

Lee SY, Kim HU, Park JH, Park JM, Kim TY. Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov Today. 2009;14(1–2):78–88. http://dx.doi.org/10.1016/j.drudis.2008.08.00

Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl. 2014;53(34):8840–69. http://dx.doi.org/10.1002/anie.201310843

Corrie K, Hardman JG. Mechanisms of drug interactions: pharmacodynamics and pharmacokinetics. Anaesth Intensive Care Med. 2011;12(4):156–9. http://dx.doi.org/10.1016/j.mpaic.2010.12.008

Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–68. http://dx.doi.org/10.1002/jps.20178

Yanling J, Xin L, Zhiyu L. The antibacterial drug discovery. In: Drug Discovery. InTech; 2013. https://doi.org/10.5772/52510

Page MGP. Beta-lactam antibiotics. In: Antibiotic Discovery and Development. Boston, MA: Springer US; 2012. p. 79–117. https://doi.org/10.1007/978-1-4614-1400-1_3

Zakeri B, Wright GD. Chemical biology of tetracycline antibioticsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Systems and Chemical Biology, and has undergone the Journal’s usual peer review process. Biochem Cell Biol. 2008;86(2):124–36. http://dx.doi.org/10.1139/o08-002

Becker B, Cooper MA. Aminoglycoside antibiotics in the 21st century. ACS Chem Biol. 2013;8(1):105–15. http://dx.doi.org/10.1021/cb3005116

Pham TDM, Ziora ZM, Blaskovich MAT. Quinolone antibiotics. Medchemcomm2019;10(10):1719–39. http://dx.doi.org/10.1039/c9md00120

Dinos GP. The macrolide antibiotic renaissance. Br J Pharmacol. 2017;174(18):2967–83. http://dx.doi.org/10.1111/bph.13936

Yim G, Thaker MN, Koteva K, Wright G. Glycopeptide antibiotic biosynthesis. J Antibiot (Tokyo). 2014;67(1):31–41. http://dx.doi.org/10.1038/ja.2013.117

Freischem S, Grimm I, López-Pérez A, Willbold D, Klenke B, Vuong C, et al. Interaction mode of the novel monobactam AIC499 targeting penicillin binding protein 3 of Gram-negative bacteria. Biomolecules. 2021;11(7):1057. http://dx.doi.org/10.3390/biom11071057

Armstrong T, Fenn SJ, Hardie KR. JMM Profile: Carbapenems: a broad-spectrum antibiotic: This article is part of the JMM Profiles collection. J Med Microbiol. 2021;70(12). http://dx.doi.org/10.1099/jmm.0.001462

Spížek J, Řezanka T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem Pharmacol. 2017;133:20–8. http://dx.doi.org/10.1016/j.bcp.2016.12.001

Sköld OE, Swedberg G. Sulfonamides and trimethoprim. In: Antimicrobial Drug Resistance. Cham: Springer International Publishing; 2017. p. 345–58. https://doi.org/10.1007/978-3-319-46718-4_24

van Saene R, Fairclough S, Petros A. Broad- and narrow-spectrum antibiotics: a different approach. Clin Microbiol Infect. 1998;4(1):56–7. http://dx.doi.org/10.1111/j.1469-0691.1998.tb00338.x.

Kaur, S.P., R. Rao, and S.J.I.J.P.P.S. Nanda, Amoxicillin: a broad spectrum antibiotic. 2011. 3(3): p. 30-7.

Hash JH. Antibiotic mechanisms. Annu Rev Pharmacol. 1972;12(1):35–56. http://dx.doi.org/10.1146/annurev.pa.12.040172.000343

Sarkar P, Yarlagadda V, Ghosh C, Haldar J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. Medchemcomm. 2017;8(3):516–33. http://dx.doi.org/10.1039/c6md00585c

McCoy LS, Xie Y, Tor Y. Antibiotics that target protein synthesis. Wiley Interdiscip Rev RNA. 2011;2(2):209–32. http://dx.doi.org/10.1002/wrna.60

Cambau E, Guillard T. Antimicrobials that affect the synthesis and conformation of nucleic acids: -EN- -FR- -ES-. Rev Sci Tech. 2012;31(1):77–87. http://dx.doi.org/10.20506/rst.31.1.2102

Gilbert P, Allison D, Lambert P. Antibiotics that act on nucleic acids and protein biosynthesis. In: Molecular Medical Microbiology. Elsevier; 2002. p. 599–608. https://doi.org/10.1016/B978-012677530-3/50247-6

Fernández-Villa D, Aguilar MR, Rojo L. Folic acid antagonists: Antimicrobial and immunomodulating mechanisms and applications. Int J Mol Sci. 2019;20(20):4996. http://dx.doi.org/10.3390/ijms20204996

Schwarz S, Cloeckaert A, Roberts MC. Mechanisms and spread of bacterial resistance to antimicrobial agents. In: Antimicrobial Resistance in Bacteria of Animal Origin. Washington, DC, USA: ASM Press; 2019. p. 73–98.

https://doi.org/10.1128/9781555817534.ch6

Todar, K.J.T.s.o.t.o.b., Bacterial resistance to antibiotics (page 3). 2011. 4.

Lambert P. Bacterial resistance to antibiotics: Modified target sites. Adv Drug Deliv Rev. 2005;57(10):1471–85. http://dx.doi.org/10.1016/j.addr.2005.04.003

Webber MA. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother. 2003;51(1):9–11. http://dx.doi.org/10.1093/jac/dkg050

ALTINÖZ, E., E.M.J.I.J.o.I.R. Altuner, and Reviews, Antibiotic resistance and efflux pumps. 2019. 3(2): p. 1-9.

Wright G. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv Drug Deliv Rev. 2005;57(10):1451–70. http://dx.doi.org/10.1016/j.addr.2005.04.002

Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta Proteins Proteom . 2009;1794(5):808–16. http://dx.doi.org/10.1016/j.bbapap.2008.11.005

Stewart PS, William Costerton J. Antibiotic resistance of bacteria in biofilms. Lancet . 2001;358(9276):135–8. http://dx.doi.org/10.1016/s0140-6736(01)05321-1

Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. 2002;292(2):107–13. http://dx.doi.org/10.1078/1438-4221-00196

von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7. http://dx.doi.org/10.3389/fmicb.2016.00173

Sifri Z, Chokshi A, Cennimo D, Horng H. Global contributors to antibiotic resistance. J Glob Infect Dis. 2019;11(1):36. http://dx.doi.org/10.4103/jgid.jgid_110_18

Moran RA, Anantham S, Holt KE, Hall RM. Prediction of antibiotic resistance from antibiotic resistance genes detected in antibiotic-resistant commensalEscherichia coliusing PCR or WGS. J Antimicrob Chemother. 2016;dkw511. http://dx.doi.org/10.1093/jac/dkw511

Abramova A, Berendonk TU, Bengtsson-Palme J. A global baseline for qPCR-determined antimicrobial resistance gene prevalence across environments. Environ Int. 2023;178(108084):108084. http://dx.doi.org/10.1016/j.envint.2023.108084

Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother . 2017;72(10):2764–8. http://dx.doi.org/10.1093/jac/dkx217

Roeber F, Jex AR, Gasser RB. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective. Parasit Vectors . 2013;6(1). http://dx.doi.org/10.1186/1756-3305-6-153

Macesic N, Polubriaginof F, Tatonetti NP. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance. Curr Opin Infect Dis. 2017;30(6):511–7. http://dx.doi.org/10.1097/qco.0000000000000406

Munk P, Andersen VD, de Knegt L, Jensen MS, Knudsen BE, Lukjancenko O, et al. A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds. J Antimicrob Chemother. 2017;72(2):385–92. http://dx.doi.org/10.1093/jac/dkw415

Fluit AC, Visser MR, Schmitz F-J. Molecular detection of antimicrobial resistance. Clin Microbiol Rev. 2001;14(4):836–71. http://dx.doi.org/10.1128/cmr.14.4.836-871.2001

Tao C-W, Hsu B-M, Ji W-T, Hsu T-K, Kao P-M, Hsu C-P, et al. Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Sci Total Environ. 2014;496:116–21. http://dx.doi.org/10.1016/j.scitotenv.2014.07.024

Aminov, R.I., et al., Detection of tetracycline resistance genes by PCR methods. 2004: p. 3-13.

Wada M, Lkhagvadorj E, Bian L, Wang C, Chiba Y, Nagata S, et al. Quantitative reverse transcription‐PCR assay for the rapid detection of methicillin‐resistant Staphylococcus aureus. J Appl Microbiol. 2010;108(3):779–88.

Ota Y, Furuhashi K, Nanba T, Yamanaka K, Ishikawa J, Nagura O, et al. A rapid and simple detection method for phenotypic antimicrobial resistance in Escherichia coli by loop-mediated isothermal amplification. J Med Microbiol. 2019;68(2):169–77. http://dx.doi.org/10.1099/jmm.0.000903

Veenemans J, Overdevest IT, Snelders E, Willemsen I, Hendriks Y, Adesokan A, et al. Next-generation sequencing for typing and detection of resistance genes: Performance of a new commercial method during an outbreak of extended-spectrum-beta-lactamase-producing Escherichia coli. J Clin Microbiol. 2014;52(7):2454–60. http://dx.doi.org/10.1128/jcm.00313-14

Strommenger B, Kettlitz C, Werner G, Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes instaphylococcus aureus. J Clin Microbiol. 2003;41(9):4089–94. http://dx.doi.org/10.1128/jcm.41.9.4089-4094.2003

Frye JG, Jesse T, Long F, Rondeau G, Porwollik S, McClelland M, et al. DNA microarray detection of antimicrobial resistance genes in diverse bacteria. Int J Antimicrob Agents . 2006;27(2):138–51. http://dx.doi.org/10.1016/j.ijantimicag.2005.09.021

Ghafourian, S., et al., Extended spectrum beta-lactamases: definition, classification and epidemiology. 2015. 17(1): p. 11-22.

ur Rahman S, Ali T, Ali I, Khan NA, Han B, Gao J. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int. 2018;2018:1–14. http://dx.doi.org/10.1155/2018/9519718

Senok AC, Khanfar HS, Bindayna KM, Botta GA. Extended spectrum beta-lactamases (ESBL) in Escherichia coli and Klebsiella pneumoniae: trends in the hospital and community settings. J Infect Dev Ctries. 2009;3(04). http://dx.doi.org/10.3855/jidc.127

Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015;22(1):90–101. http://dx.doi.org/10.1016/j.sjbs.2014.08.002

Saliu E-M, Vahjen W, Zentek J. Types and prevalence of extended–spectrum beta–lactamase producing Enterobacteriaceae in poultry. Anim Health Res Rev. 2017;18(1):46–57. http://dx.doi.org/10.1017/s1466252317000020

Theuretzbacher U, Piddock LJV. Non-traditional antibacterial therapeutic options and challenges. Cell Host Microbe. 2019;26(1):61–72. http://dx.doi.org/10.1016/j.chom.2019.06.004

Mühlen S, Dersch P. Anti-virulence strategies to target bacterial infections. In: Current Topics in Microbiology and Immunology. Cham: Springer International Publishing; 2015. p. 147–83. https://doi.org/10.1007/82_2015_490

Ogawara H. Possible drugs for the treatment of bacterial infections in the future: anti-virulence drugs. J Antibiot (Tokyo). 2021;74(1):24–41. http://dx.doi.org/10.1038/s41429-020-0344-z

Principi N, Silvestri E, Esposito S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol. 2019;10. http://dx.doi.org/10.3389/fphar.2019.00513

Gao W, Thamphiwatana S, Angsantikul P, Zhang L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(6):532–47. http://dx.doi.org/10.1002/wnan.1282

Jelinkova P, Mazumdar A, Sur VP, Kociova S, Dolezelikova K, Jimenez AMJ, et al. Nanoparticle-drug conjugates treating bacterial infections. J Control Release. 2019;307:166–85. http://dx.doi.org/10.1016/j.jconrel.2019.06.013

Yuan P, Ding X, Yang YY, Xu Q-H. Metal nanoparticles for diagnosis and therapy of bacterial infection. Adv Healthc Mater. 2018;7(13). http://dx.doi.org/10.1002/adhm.201701392

Published on: 25-07-2024

Also Available On

Note: Third-party indexing sometime takes time. Please wait one week or two for indexing. Validate this article's Schema Markup on Schema.org

How to Cite

Hamadamin, H. Z., Shallal, A. F., & Qader, I. N. (2024). Synergistic role of Extended-spectrum beta-lactamases (ESBL) and bacterial structure on antibacterial drugs. Jabirian Journal of Biointerface Research in Pharmaceutics and Applied Chemistry, 1(3), 26–36. https://doi.org/10.55559/jjbrpac.v1i3.293

Issue

Section

Review Article
2584-2536