Thermal Expansion in Supramolecular Organic Compounds: An Overview

Downloads

Download the Article:

Authors

  • Sunil Kumar School of Science and Technology, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh- 247121, India
  • Vikrant Jayant School of Science and Technology, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh- 247121, India https://orcid.org/0000-0002-9891-4470
  • Wasim Khan College of Engineering, Taibah University Yanbu, KSA https://orcid.org/0000-0002-9803-5871
  • Rakhi Tyagi Foundation of Innovation and Technology, Indian Institute of Technology, New Delhi, India
  • Mohd Yusuf School of Science and Technology, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh- 247121, India https://orcid.org/0000-0003-0927-8490
https://doi.org/10.55559/jjbrpac.v1i6.458

Keywords:

Thermal expansion, Polymorphism, Thermal stability, Supramolecules

Abstract

Supramolecular organic molecules are composed of molecular assemblies held collectively by non-covalent bonding or interactions. These molecules exhibited negative and positive thermal enlargement apart from traditional substances. Their thermal response arises from the dynamic and bendy nature of their molecular frameworks, regularly leading to tunable or anomalous thermal expansion behaviors. This work highlights the thermal expansion phenomenon in supramolecular organic compounds. Supramolecular organics with controlled thermal enlargement are vital for packages like close to-zero thermal growth composites in precision instruments, aerospace, and electronics. Their tunable conduct fits thermal actuators and sensors for temperature manipulation, even as their thermal houses beautify power devices like thermoelectrics and photovoltaics.

References

Bernstein J, Polymorphism in Molecular Crystals; Oxford University Press: Oxford, 2002.

Hilfiker R, Polymorphism in the Pharmaceutical Industry; Wiley-VCH: Weinheim, 2006. DOI: https://doi.org/10.1002/3527607889

Brittain HG, Polymorphism in pharmaceutical solids, Informa Healthcare, 2009.

Bernstein J, Conformational Polymorphism, In Organic Solid State Chemistry; G. R. Desiraju, Eds., Elsevier: Amsterdam, 1987.

MacNicol DD and Downing GA, Symmetry in the Evolution of Host Design, in Comprehensive Supramolecular Chemistry; MacNicol DD, Toda F, Bishop R Eds., Pergamon: Oxford, 1996, Vol. 6, pp 421 − 464.

Weber E, Shape and symmetry in the design of new hosts. In Comprehensive Supramolecular Chemistry, Vol. 6 Solid-state Supramolecular Chemistry: Crystal Engineering; MacNicol DD, Toda F, Bishop R Eds., Pergamon Press: Oxford, 1996, pp 535 − 592.

Goodwin, A.L. and Kepert, C.J., 2005. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials. Physical Review B—Condensed Matter and Materials Physics, 71(14), p.140301. DOI: https://doi.org/10.1103/PhysRevB.71.140301

Bishop R, Synthetic Clathrate Systems, In Supramolecular Chemistry: From Molecules to Nanomaterials, Gale PA, Steed JW, Eds., Wiley: Chichester, 2012. DOI: https://doi.org/10.1002/9780470661345.smc118

Toda F and Bishop R, In Separations and Organic Reactions in Supramolecular Chemistry; John Wiley and Sons, Ltd.: Wiley, 2004. DOI: https://doi.org/10.1002/0470020261

Weber E, in Inclusion Compounds, Atwood JL, Davies JED and MacNicol DD Eds., Oxford University Press, Oxford, 1991, Vol. 4, pp. 188.

Bishop R, Designing new lattice inclusion hosts. Chem Soc Rev. 1996;25(5):311-19. https://doi.org/10.1039/CS9962500311 DOI: https://doi.org/10.1039/cs9962500311

Weber E, Seichter W, Goldberg I. Clathratbildner mit Allenstruktur–Wirtverbindungen, Kristalleinschluß und Struktur eines Dioxan‐Clathrats. Chemische Berichte. 1990;123(4):811-20. https://doi.org/10.1002/cber.19901230428 DOI: https://doi.org/10.1002/cber.19901230428

Caira MR and Nassimbeni LR, Comprehensive Supramolecular Chemistry; Atwood JL, Davies JED, MacNicol DD and Vӧgtle F, Eds., Elsevier Science: Oxford, 1996; Vol. 6, pp 825 – 850.

Das D, Barbour LJ, Polymorphism of a hexa-host: Isolation of four different single-crystal phases by melt crystallization. J Am Chem Soc. 2008;130(43):14032-3. https://doi.org/10.1021/ja804940v DOI: https://doi.org/10.1021/ja804940v

Yang SS, Guillory JK, Polymorphism in sulfonamides. J Pharmaceut Sci. 1972;61(1):26-40. https://doi.org/10.1002/jps.2600610104 DOI: https://doi.org/10.1002/jps.2600610104

Kumar VS, Pigge FC, Rath NP. Polymorphism and pseudopolymorphism in the triaroylbenzene derivative 1, 3, 5-tris (4-cyanobenzoyl) benzene. Crystal Growth Design, 2004;4(6):1217-22. https://doi.org/10.1021/cg049792p DOI: https://doi.org/10.1021/cg049792p

Bacchi A, Carcelli M, Chiodo T, Mezzadri F, Nestola F, Rossi A, Inclusion properties, polymorphism and desolvation kinetics in a new 2-pyridyl iminophenol compound with 1D nanochannels. Crystal Growth Design. 2009;9(8):3749-58. https://doi.org/10.1021/cg900442x DOI: https://doi.org/10.1021/cg900442x

Bhattacharya, S. and Saha, B.K., 2012. Uniaxial negative thermal expansion in an organic complex caused by sliding of layers. Crystal growth & design, 12(10), pp.4716-4719. DOI: https://doi.org/10.1021/cg300980s

Ghosh, S. and Reddy, C.M., 2012. Elastic and bendable caffeine cocrystals: implications for the design of flexible organic materials. Angewandte Chemie International Edition, 51(41), pp.10319-10323. DOI: https://doi.org/10.1002/anie.201204604

Braga, D., Maini, L. and Grepioni, F., 2013. Mechanochemical preparation of co-crystals. Chemical Society Reviews, 42(18), pp.7638-7648. DOI: https://doi.org/10.1039/c3cs60014a

Saha, S. and Desiraju, G.R., 2018. Acid··· Amide supramolecular synthon in cocrystals: from spectroscopic detection to property engineering. Journal of the American Chemical Society, 140(20), pp.6361-6373. DOI: https://doi.org/10.1021/jacs.8b02435

Tothadi, S. and Desiraju, G.R., 2012. Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1969), pp.2900-2915. DOI: https://doi.org/10.1098/rsta.2011.0309

Dutta, S., Negi, L. and Munshi, P., 2024. Multifunctional single-component organic molecular materials: ferroelectricity, negative thermal expansion, and polymorphism. Materials Advances, 5(19), pp.7495-7515. https://doi.org/10.1039/D4MA00444B DOI: https://doi.org/10.1039/D4MA00444B

Sethi, T. and Das, D., 2024. Switching from positive to negative thermal expansion in a tetrayne-diol compound. CrystEngComm, 26(37), pp.5133-5137. https://doi.org/10.1039/D4CE00703D DOI: https://doi.org/10.1039/D4CE00703D

Vikas, Negi, L. and Munshi, P., 2024. Dynamic Order–Disorder Reversible Phase Transition and Anisotropic Thermal Expansions in a Single-Component Organic Molecular Crystal. Crystal Growth & Design, 24(6), pp.2533-2541. https://doi.org/10.1021/acs.cgd.3c01549 DOI: https://doi.org/10.1021/acs.cgd.3c01549

Negi, L., Sethi, T. and Das, D., Noncovalent interactions and transverse vibration induced restricted thermal expansion of organic salts derived from imidazole and carboxylic acids. Chemistry–An Asian Journal, p.e202400804. https://doi.org/10.1002/asia.202400804 DOI: https://doi.org/10.1002/asia.202400804

Das, D., Jacobs, T. and Barbour, L.J., 2010. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nature Materials, 9(1), pp.36-39. https://doi.org/10.1038/nmat2583 DOI: https://doi.org/10.1038/nmat2583

Negi, L., Shrivastava, A. and Das, D., 2018. Switching from positive to negative axial thermal expansion in two organic crystalline compounds with similar packing. Chemical Communications, 54(76), pp.10675-10678. https://doi.org/10.1039/C8CC05859H DOI: https://doi.org/10.1039/C8CC05859H

Hasebe, S., Hagiwara, Y., Ueno, T., Asahi, T. and Koshima, H., 2024. Negative to positive axial thermal expansion switching of an organic crystal: contribution to multistep photoactuation. Chemical Science, 15(3), pp.1088-1097. https://doi.org/10.1039/D3SC04796B DOI: https://doi.org/10.1039/D3SC04796B

Dwivedi, B., Shrivastava, A., Negi, L. and Das, D., 2019. Colossal positive and negative axial thermal expansion induced by scissor-like motion of a two-dimensional hydrogen bonded network in an organic salt. Crystal Growth & Design, 19(5), pp.2519-2524. https://doi.org/10.1021/acs.cgd.9b00145 DOI: https://doi.org/10.1021/acs.cgd.9b00145

Yusuf M, Shabbir M, Mohammad F. Natural colorants: Historical, processing and sustainable prospects. Nat Prod Bioprospect. 2017;7:123-45. https://doi.org/10.1007/s13659-017-0119-9 DOI: https://doi.org/10.1007/s13659-017-0119-9

Yusuf M, Ahmad A, Shahid M, Khan MI, Khan SA, Manzoor N, Mohammad F. Assessment of colorimetric, antibacterial and antifungal properties of woollen yarn dyed with the extract of the leaves of henna (Lawsonia inermis). J Clean Prod. 2012;27:42-50. https://doi.org/10.1016/j.jclepro.2012.01.005 DOI: https://doi.org/10.1016/j.jclepro.2012.01.005

Yusuf M, Shahid M, Khan MI, Khan SA, Khan MA, Mohammad F. Dyeing studies with henna and madder: A research on effect of tin (II) chloride mordant. J Saudi Chem Soc. 2015;19(1):64-72. https://doi.org/10.1016/j.jscs.2011.12.020 DOI: https://doi.org/10.1016/j.jscs.2011.12.020

Yusuf M. Agro-industrial waste materials and their recycled value-added applications. Handbook of Ecomaterials. 2017;1:1-1. https://doi.org/10.1007/978-3-319-68255-6_48 DOI: https://doi.org/10.1007/978-3-319-48281-1_48-1

Yusuf M, Mohammad F, Shabbir M. Eco-friendly and effective dyeing of wool with anthraquinone colorants extracted from Rubia cordifolia roots: Optimization, colorimetric and fastness assay. J King Saud University-Sci. 2017;29(2):137-44. https://doi.org/10.1016/j.jksus.2016.06.005 DOI: https://doi.org/10.1016/j.jksus.2016.06.005

Yusuf M, Aijaz M, Keserwani N, Ansari NH, Ahmad S. Ethnomedicinal, pharmacological and commercial perspectives of Laccifer lacca body exudate (LBE). Letters in Applied NanoBioScience. 2022;12:1-0. https://doi.org/10.33263/LIANBS121.021 DOI: https://doi.org/10.33263/LIANBS121.021

Yusuf, M., 2018. Natural antimicrobial agents for food biopreservation. In Food packaging and preservation (pp. 409-438). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-811516-9.00012-9

Yusuf, M., Khan, M.A. and Mohammad, F., 2016. Investigations of the colourimetric and fastness properties of wool dyed with colorants extracted from Indian madder using reflectance spectroscopy. Optik, 127(15), pp.6087-6093. https://doi.org/10.1016/j.ijleo.2016.04.084 DOI: https://doi.org/10.1016/j.ijleo.2016.04.084

Published on: 28-01-2025

Also Available On

Note: Third-party indexing sometime takes time. Please wait one week or two for indexing. Validate this article's Schema Markup on Schema.org

How to Cite

Kumar, S., Jayant, V., Khan, W., Tyagi, R., & Yusuf, M. (2025). Thermal Expansion in Supramolecular Organic Compounds: An Overview. Jabirian Journal of Biointerface Research in Pharmaceutics and Applied Chemistry, 1(6), 15–22. https://doi.org/10.55559/jjbrpac.v1i6.458

Issue

Section

Review Article
2584-2536

Most read articles by the same author(s)